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Abstract. In order to extend the dynamical clustering algorithm to interval data
sets, we define the prototype of a cluster by optimization of a classical adequacy
criterion based on Hausdorff distance. Once this class prototype properly defined
we give a simple and converging algorithm for this new type of interval data.

1 Introduction

The main aim of this article is to define a dynamical clustering algorithm for
data tables where each cell contains an interval of real values (Table ?? for
instance). This type of data is a particular case of a symbolic data table where
each cell can be an interval, a set of categories or a frequency distribution
(Diday (1988), Bock and Diday (2000)).

Pulse Rate Systolic pressure Diastolic pressure

1 [60,72] [90,130] [70,90]

2 [70,112] [110,142] [80,108]

3 [54,72] [90,100] [50,70]

4 [70,100] [130,160] [80,110]

5 [63,75] [60,100] [140,150]

6 [44,68] [90,100] [50,70]

Table 1. A data table for n = 6 patients and p = 3 interval variables

Dynamical clustering algorithms (Diday (1971), Diday and Simon (1976))
are iterative two steps relocation algorithms involving at each iteration the
identification of a prototype (or center) for each cluster by optimizing an
adequacy criterion. The k-means algorithm with class prototypes updated
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after all objects have been considered for relocation, is a particular case of
dynamical clustering with adequacy criterion equal to variance criterion such
that class prototypes equal to cluster centers of gravity (MacQueen (1967),
Späth (1980)).

In dynamical clustering, the optimization problem is the following. Let Ω
be a set of n objects indexed by i = 1, ..., n and described by p quantitative
variables. Then each object i is described by a vector xi ∈ <p. The problem
is to find the partition P = (C1, ..., CK) of Ω in K clusters and the system
Y = (y1, ..., yK) of class prototypes, optimum with respect to a partitioning
criterion g(P, Y ). Two classical partitioning criteria are:

g(P, Y ) =
K∑

k=1

∑
i∈Ck

d2(xi, yk) (1)

where d(x, y) = ||x− y||2 is the L2 distance, and:

g(P, Y ) =
K∑

k=1

∑
i∈Ck

d(xi, yk) (2)

where d(x, y) = ||x− y||1 is the L1 distance.
More precisely, the dynamical clustering algorithm converges and the par-

titioning criterion decreases at each iteration if the class prototypes are prop-
erly defined at each ’representation’ step. Indeed, the problem is to find the
prototype y of each cluster C ⊂ {1, ..., n} which minimizes an adequacy cri-
terion f(y) measuring the “dissimilarity” between the prototype y and the
cluster C. The two adequacy criteria corresponding to the partitioning crite-
ria (??) and (??) are respectively:

f(y) =
∑
i∈C

d2(xi, y) =
∑
i∈C

p∑
j=1

(xj
i − yj)2 (3)

and:

f(y) =
∑
i∈C

d(xi, y) =
∑
i∈C

p∑
j=1

|xj
i − yj | (4)

The coordinates of the class prototype y minimizing criterion (??) are:

yj = mean{xj
i | i ∈ C} (5)

and the coordinates of the class prototype y minimizing criterion (??) are:

yj = median{xj
i | i ∈ C} (6)

In this latter case, the solution yj is not always unique. If there is an interval
of solutions, we usually choose yj as the midpoint of this interval.
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In this paper, we define the prototype y of a cluster C in the particular
case of p-dimensional interval data. Each object i is now described on each
variable j by an interval

xj
i = [aj

i , b
j
i ] ∈ I = {[a, b] | a, b ∈ < , a ≤ b}

and the coordinates of the class prototype y are also intervals of I noted
yj = [αj , βj ]. In other words, the vector xi representing an object i and
the class prototype y are vectors of intervals, i.e., (hyper-)rectangles in the
euclidean space <p.
The distance d between two vectors of intervals xi and xi′ will be based on
the Hausdorff distance between two sets. This distance is given section ??.
Then we focus on the optimization problem for class prototypes and on its
solution in section ??. Once the new class prototypes properly defined, a
dynamical clustering algorithm of interval data is presented in section ??.

2 A distance measure between two vectors of intervals

There are several methods for measuring dissimilarities between interval data
or more generally between symbolic objects (Chapters 8 and 11.2.2 of Bock
and Diday (2000), De Carvalho (1998), Ichino and Yaguchi (1994)).

From our point of view, it is a natural approach to use Hausdorff distance,
initially defined to compare two sets, to compare two intervals.

The Hausdorff distance dH between two sets A,B ∈ <p is (Aubin, (1994)):

dH(A,B) = max(h(A,B), h(B,A)) (7)

with

h(A,B) = sup
a∈A

inf
b∈B
||b− a|| (8)

By using L2 norm in (??), the Hausdorff distance dH between two intervals
A1 = [a1, b1] and A2 = [a2, b2] is:

dH(A1, A2) = max(|a1 − a2|, |b1 − b2|) (9)

In this paper, the distance d between two vectors of intervals

xi = ([a1
i , b

1
i ], ..., [a

p
i , b

p
i ])

and
xi′ = ([a1

i′ , b
1
i′ ], ..., [a

p
i′ , b

p
i′ ])

representing two objects i and i′ is defined as the sum for j = 1, ..., p of the
Haussdorf distance (??) between the two intervals [aj

i , b
j
i ] and [aj

i′ , b
j
i′ ].
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Finally, the distance d is defined by:

d(xi, xi′) =
p∑

j=1

dH(xj
i , x

j
i′) =

p∑
j=1

max(|aj
i − aj

i′ |, |b
j
i − bj

i′ |) (10)

In the particular case of intervals reduced to single points, this distance
is the well-known L1 distance between two points of <p.

3 The optimization problem for class prototype

As presented in the introduction, the prototype y of a cluster C is defined in
dynamical clustering by optimizing an adequacy criterion f measuring the
“dissimilarity” between the prototype and the cluster. Here, we search the
vector of intervals y noted:

y = (y1, ..., yp) = ([α1, β1], ..., [αp, βp])

which minimizes the following adequacy criterion:

f(y) =
∑
i∈C

d(xi, y) =
∑
i∈C

p∑
j=1

dH(xj
i , y

j) (11)

where d is the distance between two vectors of intervals given in (??).
The criterion (??) can also be written:

f(y) =
p∑

j=1

f̃(yj)︷ ︸︸ ︷∑
i∈C

dH(xj
i , y

j) (12)

and the problem is now to find for j = 1, ..., p the interval yj = [αj , βj ] which
minimizes:

f̃(yj) =
∑
i∈C

dH(xj
i , y

j) =
∑
i∈C

max(|αj − aj
i |, |β

j − bj
i |) (13)

We will see how to solve this minimization problem by transforming it
into two well-known L1 norm problems.

Let mj
i be the midpoint of an interval xj

i = [aj
i , b

j
i ] and lji be an half of its

length:

mj
i =

aj
i + bj

i

2

lji =
bj
i − aj

i

2
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and let µj and λj be respectively the midpoint and the half-length of the
interval yj = [αj , βj ]. According to the following property defined for x and
y in <:

max(|x− y|, |x + y|) = |x|+ |y| (14)

the function (??) can be written:

f̃(yj) =
∑
i∈C

max(|(µj − λj)− (mj
i − lji )|, |(µ

j + λj)− (mj
i + lji )|)

=
∑
i∈C

max(|(µj −mj
i )− (λj − lji )|, |(µ

j −mj
i ) + (λj − lji )|)

=
∑
i∈C

(|µj −mj
i |+ |λ

j − lji |) =
∑
i∈C

(|µj −mj
i |+

∑
i∈C

|λj − lji |) (15)

This yields two well-known minimization problems in L1 norm: Find µj ∈
< which minimizes: ∑

i∈C

|µj −mj
i | (16)

and find λj ∈ < which minimizes:∑
i∈C

|λj − lji | (17)

The solutions µ̂j and λ̂j are respectively the median of {mj
i , i ∈ C}, the

midpoints of the intervals xj
i = [aj

i , b
j
i ], i ∈ C, and the median of the set

{lji , i ∈ C} of their half-lengths. Finally, the solution ŷj = [α̂j , β̂j ] is the
interval [µ̂j − λ̂j , µ̂j + λ̂j ].

4 The dynamical clustering algorithm

Iterative algorithms or dynamical clustering methods for symbolic data have
already been proposed in Bock (2001), De Carvhalo et al. (2001) and Verde et
al (2000). Here, we consider the problem of clustering a set Ω = {1, ..., i, ..., n}
of n objects into K disjoint clusters C1, ..., CK in the particular case of objects
described on each variable j by an interval xj

i = [aj
i , b

j
i ] of <.

The dynamical clustering algorithm search for the partition P = (C1, ..., CK)
of Ω and the system Y = (y1, ..., yK) of class prototypes which are optimum
with respect to the following partitioning criterion based on the distance d
defined in (??):



6 Marie Chavent, Yves Lechevallier

g(P, Y ) =
K∑

k=1

∑
i∈Ck

d(xi, yk)

=
K∑

k=1

∑
i∈Ck

p∑
j=1

max(|aj
i − αj

k|, |b
j
i − βj

k|) (18)

This algorithm proceeds like classical dynamical clustering by iteratively
repeating an ’allocation’ step and a ’representation’ step.

4.1 The ’representation step’

During the ’representation’ step, the algorithm computes for each cluster Ck

the prototype yk which minimizes the adequacy criterion given in (??). We
have defined in section ?? the ’optimal’ prototype yk for this criterion. It
is described on each variable j by the interval [αj

k, βj
k] = [µj

k − λj
k, µj

k + λj
k]

where:

µj
k = median{mj

i | i ∈ Ck} (19)

is the median of the midpoints of the intervals [aj
i , b

j
i ] with i ∈ Ck and

λj
k = median{lji | i ∈ Ck} (20)

is the median of their half-lenghts.

4.2 The ’allocation’ step

During the ’allocation step’, the algorithm performes a new partition by
reassigning each object i to the closest class prototype yk∗ where:

k∗ = arg min
k=1,...,K

d(xi, yk)

and d is defined in (??).

4.3 The algorithm

Finally the algorithm is the following:

(a) Initialization
Choose a partition (C1, . . . , CK) of the data set Ω or choose K distinct
objects y1, ..., yK among Ω and assign each object i to the closest proto-
type yk∗ (k∗ = arg mink=l,...,K

∑p
j=1 max(|aj

i −αj
k|, |b

j
i −βj

k|) to contruct
the initial partition (C1, . . . , CK).
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(b) ’Representation’ step
For k in 1 to K compute the prototype yk = (y1

k, ..., yp
k) with yj

k =
[αj

k, βj
k] = [µj

k − λj
k, µj

k + λj
k] and:

µj
k = median{mj

i | i ∈ Ck}
λj

k = median{lji | i ∈ Ck}

(c) ’Allocation’ step
test← 0
For i in 1 to n do

define the cluster Ck∗ such that

k∗ = arg min
k=l,...,K

p∑
j=1

max(|aj
i − αj

k|, |b
j
i − βj

k|)

if i ∈ Ck and k∗ 6= k
test← 1
Ck∗ ← Ck∗ ∪ {i}
Ck ← Ck\{i}

(d) If test = 0 END, else go to (b)

5 Conclusion

We have proposed a dynamical clustering algorithm for interval data sets. The
convergence of the algorithm and the decrease of the partitioning criterion
at each iteration, is due to the optimization of the adequacy criterion (??)
at each ’representation’ step. The implementation of this algorithm is simple
and the computationnal complexity is in nlog(n).
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