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Université Bordeaux 1 - 351, Cours de la libération,
33405 Talence Cedex, France
chavent@math.u-bordeaux.fr

Summary. The Hausdorff distance between two sets is used in this paper to com-
pare hyper-rectangles. An explicit formula for the optimum class prototype is found
in the particular case of the Hausdorff distance for the L∞ norm. When used for
dynamical clustering of interval data, this prototype will ensure that the clustering
criterion decreases at each iteration.

1 Introduction and notations

Symbolic Data Analysis (SDA) deals with data tables where each cell is not
only a single value but also an interval of values, a set of categories or a
frequency distribution. SDA generalizes well-known methods of multivariate
data analysis to this new type of data representations (Diday, 1988), (Bock
and Diday, 2000).

Throughout this paper, we consider the problem of clustering a set
Ω = {1, ..., i, ..., n} of n objects into K disjoint clusters {C1, ..., CK} by dy-
namical clustering (Diday and Simon, 1976). Iterative algorithms or dynami-
cal clustering methods for symbolic data have already been proposed in Bock
(2001), Verde et al. (2000).

Here, we consider the particular case of objects i described on each variable
j by an interval x

j
i = [aj

i , b
j
i ] of ℜ. In other words an object i is an hyper-

rectangle in the euclidean space ℜp noted:

xi =

p
∏

j=1

[aj
i , b

j
i ]

︸ ︷︷ ︸

x
j

i
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In dynamical clustering, the prototype y of a cluster C is defined by op-
timizing an adequacy criterion f measuring the “dissimilarity” between the
prototype and the cluster. In the particular case of interval data, this proto-
type is an hyper-rectangle (see Fig. 1).

Fig. 1. A prototype y (thick line) of a set of rectangles (thin lines)

Here, the distance chosen to compare two p-dimensional hyper-rectangles
is the Hausdorff distance dH . This distance, defined two compare two sets of
objects, depends on the distance chosen two compare two objects, here two
points of ℜp. In the particular case where the Hausdorff distance is based
on the L∞ distance in ℜp, we are able to give an explicit formula for the
prototype which minimizes:

f(y) = max
i∈C

dH(xi, y) (1)

In the case of Hausdorff distances based on Euclidean or Manhattan dis-
tance between points, explicit formulas seem to be more difficult to find.

Chavent and Lechevallier (2002), give however an explicit formula of the
prototype ŷ which minimizes the adequacy criterion:

f(y) =
∑

i∈C

d(xi, y) (2)

where d is not the Haudorff distance between two hyper-rectangles but the
sum on each variable j of the one-dimensional Hausdorff distance dH between
two intervals.

In practice, the hyper-rectangle prototype defined in this article will prob-
ably be more sentitive to extreme values than the one defined in Chavent and
Lechevallier (2002) but the distance used is a “real” Hausdorff distance on
ℜp-set.

2 The L∞ Hausdorff distance between two

hyper-rectangles

The Hausdorff distance (Nadler, 1978), (Rote, 1991), often used in image
processing (Huttenlocher et al., 1993), is defined to compare two sets A and
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B of objects. This distance depends on the distance d chosen to compare two
objects u and v respectively in A and B.
We consider here, the L∞ distance d∞ between two points u and v of ℜp:

d∞(u, v) = max
j=1,...,p

|uj − vj | (3)

and call ”L∞ Hausdorff distance” the Hausdorff distance associated to d∞.
Given A and B two hyper-rectangles of ℜp noted:

A =

p
∏

j=1

Aj , B =

p
∏

j=1

Bj

where Aj = [aj , bj ] and Bj = [αj , βj ] are intervals of ℜ, the L∞ Hausdorff
distance dH,∞ between A and B is defined by:

dH,∞(A, B) = max(h∞(A, B), h∞(B, A)) (4)

where
h∞(A, B) = sup

u∈A

inf
v∈B

d∞(u, v) (5)

Remark 1. In the one dimensional case i.e. Aj = [aj , bj ] and Bj = [αj , βj ], we
can drop the ∞ subscript:

h(Aj , Bj) = sup
uj∈Aj

inf
vj∈Bj

|uj − vj | (6)

and formula (4) simplifies to:

dH(Aj , Bj) = max(|aj − αj |, |bj − βj |) (7)

This remark will be used in the proof of properties 1 and 2, which are the
basis for the explicit formulas of the optimum class prototype in section 3.

Property 1. With the L∞ distance, we have the following relation between the
asymetrical functions h in p dimensions and in one dimension:

h∞(A, B) = max
j=1,...,p

h(Aj , Bj) (8)

Proof:

h∞(A, B) = sup
u∈A

{ inf
v∈B

max
j=1,...,p

|uj − vj |}

= sup
u∈A

{ max
j=1,...,p

{ inf
v1∈B1

|u1 − v1|, ..., inf
vp∈Bp

|up − vp|}}

= max
j=1,...,p

sup
uj∈Aj

inf
vj∈Bj

|uj − vj |

︸ ︷︷ ︸

h(Aj ,Bj)
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Property 2. With the L∞ distance, we have the following relation between the
Haudorff distances dH in p dimensions and in one dimension:

dH,∞(A, B) = max
j=1,...,p

dH(Aj , Bj) (9)

Proof: From (8) we have :

h∞(A, B) = max
j=1,...,p

h(Aj , Bj)

h∞(B, A) = max
j=1,...,p

h(Bj , Aj)

Then:

dH,∞(A, B) = max{h∞(A, B), h∞(B, A)}

= max
j=1,...,p

max{h(Aj , Bj), h(Bj , Aj)}

= max
j=1,...,p

max{|aj − αj |, |bj − βj |}
︸ ︷︷ ︸

dH(Aj ,Bj)

3 The optimum class prototype

We denote by y and xi ∈ C the hyper-rectangles which describe respectively
the prototype and an object in cluster C:

y =

p
∏

j=1

[αj , βj ]
︸ ︷︷ ︸

yj

xi =

p
∏

j=1

[aj
i , b

j
i ]

︸ ︷︷ ︸

x
j

i

We measure the “dissimilarity” between the prototype y and the cluster C

by mean of the function f defined in (1), in the particular case of the L∞

Hausdorff distance (4):

f(y) = max
i∈C

dH,∞(xi, y) (10)

We define our prototype ŷ as an hyper-rectangle which minimizes f . We
see that:

f(y) = max
i∈C

max
j=1,...,p

dH(xj
i , y

j) (11)

= max
j=1,...,p

max
i∈C

dH(xj
i , y

j)
︸ ︷︷ ︸

f̃j(yj)

(12)
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The equality (11) is due to property 2.

Denote now ŷj the minimizer of f̃ j (see (12)), for j = 1, ..., p. Obviously,
ŷ =

∏p

j=1 ŷj is a minimizer of f , but for all indexes j such that f̃ j(ŷj) < f(ŷ),

all intervals ỹj such that f̃ j(ỹj) ≤ f(ŷ) produce also optimal solutions. Hence,
the minimizer of f is not unique.

In the sequel, we will use the minimizer ŷ =
∏p

j=1 ŷj, computable by the
following explicit formulas (17) and (18).

We know from (12) and (7) that:

f̃ j(yj) = max
i∈C

max{|aj
i − αj |, |bj

i − βj |} (13)

i.e:
f̃ j(yj) = max{max

i∈C
|aj

i − αj |, max
i∈C

|bj
i − βj |} (14)

i.e. minimizing f̃ j is equivalent to:

min
αj∈ℜ

max
i∈C

|aj
i − αj | (15)

and
min
βj∈ℜ

max
i∈C

|bj
i − βj | (16)

The solutions α̂j and β̂j are:

α̂j =
maxi∈C a

j
i + mini∈C a

j
i

2
(17)

β̂j =
maxi∈C b

j
i + mini∈C b

j
i

2
(18)

An example of the construction of this optimum prototype ŷ is given Fig.2
and Fig.3.

4 Application to dynamical clustering

Dynamical clustering algorithm proceeds by iteratively determining the K

class prototypes yk and then reassigning all objects to the closest class pro-
totype. The advantage of using the L∞ Hausdorff distance and the adequacy
criterion defined above is that we can get explicit and simple formulas for
the prototypes. As for the convergence of the algorithm, the prototypes which
minimize the adequacy criterion, ensure the decrease of any of the two clus-
tering criteria (19) and (20), independantly of the choice of the minimizer.

g({C1, ..., CK}) =

K∑

k=1

max
i∈Ck

dH,∞(xi, yk) (19)
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Fig. 2. Construction of a prototype ŷ for j = 1 i.e. ŷ1 = [α̂1, β̂1]
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Fig. 3. Construction of a prototype ŷ

g({C1, ..., CK}) =
K

max
k=1

max
i∈Ck

dH,∞(xi, yk) (20)

Hence, according to Celeux et al. (1989), this implies the convergence of the
algorithm.
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