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Summary. In the framework of clustering, the usual aim is to cluster observations
and not variables. However the issue of clustering variables clearly appears for di-
mension reduction, selection of variables or in some case studies. A simple approach
for the clustering of variables could be to construct a dissimilarity matrix between
the variables and to apply classical clustering methods. But specific methods have
been developed for the clustering of variables. In this context center-based cluster-
ing algorithms have been proposed for the clustering of quantitative variables. In
this article we extend this approach to categorical variables. The homogeneity crite-
rion of a cluster of categorical variables is based on correlation ratios and Multiple
Correspondence Analysis is used to determine the latent variable of each cluster.
A simulation study shows that the method recovers well the underlying simulated
clusters of variables. Finally an application on a real data set also highlights the
practical benefits of the proposed approach.

Key words: clustering of variables, center-based clustering algorithm, latent vari-
able, Multiple Correspondence Analysis.

1 Introduction

From a general point of view, variable clustering lumps together variables
which are strongly related to each other and thus bring the same information.
It is a possible solution for selection of variables or dimension reduction which
are current problems with the emergency of larger and larger data bases. In
some case studies, the main objective is to cluster variables and not units,
such as sensory analysis (identification of groups of descriptors), biochemistry
(gene clustering), etc. Techniques of variable clustering can also be useful for
association rules mining (see for instance Plasse and al. [4]).

A simple approach for the clustering of variables could be to calculate
first the matrix of the dissimilarities between the variables and then to apply
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classical clustering methods which are able to deal with dissimilarity matri-
ces (complete or average linkage hierarchical clustering among others). Other
methods like Ward or k-means (dealing only with quantitative data) could
also be applied on the numerical coordinates obtained from Multidimensional
Scaling of this dissimilarity matrix. But specific methods have also been devel-
oped for the clustering of variables. In this context Cluster Analysis of Vari-
ables Around Latent Components (Vigneau and Qannari [5]) and Diametrical
clustering (Dhillon and al. [3]) are two independently proposed center-based
clustering methods for the clustering of quantitative variables. These methods
are iterative two steps relocation algorithms involving at each iteration the
identification of a cluster centroid by optimization of an homogeneity crite-
rion and the allocation of each variable to the “nearest” cluster. The cluster
centroid is a synthetic component, called latent variable, which summarizes
the variables belonging to the cluster. When high absolute correlations imply
agreement, both methods aim at maximizing the same homogeneity criterion
(based on squared correlations). In this case, the latent variable of a cluster
is the first principal component issued from Principal Component Analysis
(PCA) of the matrix containing the variables of the cluster.

In this paper we extend this relocation partitioning method to the case of
categorical variables. The homogeneity criterion is now based on correlation
ratios between the categorical variables and the cluster centroids which are
numerical variables, defined by optimization of this homogeneity criterion.

Sect. 2 presents the center-based clustering algorithm for the clustering of
categorical variables. A simulation study is carried out in Sect. 3 to show the
numerical performance of the approach and a real data application illustrates
its practical benefits. Finally some concluding remarks are given in Sect. 4.

2 A Center-based Partitioning Method for the
Clustering of Categorical Variables

Let X = (xij) be a data matrix of dimension (n, p) where a set of n objects
are described on a set of p categorical variables, that is, xij ∈Mj where Mj

is the set of categories of the jth variable. Let V = {x1, . . . ,xj , . . . ,xp} be the
set of the p columns of X, called for sake of simplicity categorical variables.
We denote by P = {C1, . . . , Ck, . . . , CK} a partition of V into K clusters and
by Y = {y1, . . . ,yk, . . . ,yK} a set of K vectors of Rn called latent variables.

The aim is to find a couple (P,Y), optimum with respect to the following
homogeneity criterion:

H(P,Y) =
K∑

k=1

S(Ck,yk), (1)

where S measures the adequacy between Ck and the latent variable yk:
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S(Ck,yk) =
∑

xj∈Ck

η2(xj ,yk), (2)

with η2(xj ,yk) the correlation ratio measuring the link between xj and yk.

Definition 1 The correlation ratio η2(xj ,yk) ∈ [0, 1] is equal to the be-
tween group sum of squares of yk in the groups defined by the categories
of xj, divided by the total sum of squares of yk. We have with yk =

(yk,1, . . . , yk,i, . . . , yk,n) ∈ Rn, η2(xj ,yk) =

∑
s∈Mj

ns(ȳks − ȳk)2∑n
i=1(yk,i − ȳk)2

, with ns

the frequency of category s, Mj the set of categories of xj and ȳks the mean
value of yk calculated on the objects belonging to category s.

2.1 Definition of the Latent Variable

The latent variable yk of a cluster Ck is defined by maximization of the ade-
quacy criterion S:

yk = arg max
u∈Rn

∑

xj∈Ck

η2(xj ,u). (3)

Proposition 1 The first principal component obtained with Multiple Corre-
spondence Analysis of Xk, the matrix containing the variables of Ck, is a
solution of (3) and is then a latent variable yk of Ck.

PROOF. Let us introduce some notations. Let G = (gis)n×qk
, with gis = 1

if i belongs to category s and 0 otherwise, be the indicator matrix of the qk

categories of the pk variables in Ck. We note Fk = (fis)n×qk
the frequency

matrix built from G. The row and column marginals define respectively the
vectors of row and column masses rk and ck. The ith element of rk is fi. = 1

n
and the sth element of ck is f.s = ns

npk
. Let us consider the two following

diagonal matrices Dn = diag(rk) and Dqk
= diag(ck). We introduce the

matrix F̃k = D−1/2
n (Fk − rkct

k)D−1/2
qk which general term writes:

f̃is =
√

nspk

ns
(
gis

pk
− ns

npk
) =

{ √
nspk

ns
( 1

pk
− ns

npk
) if i belongs to category s,

0 otherwise.

First we show that if utu = 1 and ū = 0, then 1
pk

∑
xj∈Ck

η2(xj ,u) =

utF̃kF̃t
ku. If ū = 0,

∑n
i=1 f̃isui =

√
ns√
pk

ūs, where ūs is the mean value of u
calculated on the objects belonging to category s. Thus we have:

utF̃kF̃t
ku =

1
pk

∑

xj∈Ck

∑

s∈Mj

nsū2
s =

1
pk

∑
xj∈Ck

∑
s∈Mj

ns

n (ūs − 0)2

1
n

=
1
pk

∑

xj∈Ck

η2(xj ,u).
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As the first normalized eigenvector u1 of F̃kF̃t
k maximizes utF̃kF̃t

ku, it is
a solution of (3).

Finally, as η2(xj ,u) = η2(xj , αu), for any nonnull real α, αu1 is also a
solution of (3). The proof is then completed by showing that u1 is colinear to
the first principal component issued from MCA on the centered row profiles
matrix Rk of Xk. MCA can be viewed as a weighted PCA applied to Rk =
D−1

n (Fk − rkct
k). The first principal component is then ψ1 = RkD

−1/2
qk v1,

where v1 is the eigenvector associated with the largest eigenvalue λ1 of F̃t
kF̃k.

Then we use the SVD of F̃k to write ψ1 =
√

λ1
√

nu1, and the proof is
complete. ¤

2.2 The Center-based Clustering Algorithm

The corresponding center-based algorithm is the following:

(a) Initialization step: We compute the first K principal components issued
from MCA of X. Then we assign each variable to the nearest component,
that is to the component with which its correlation ratio is the highest.
Thus we get an initial partition {C1, . . . , Ck, . . . , CK} of V.

(b)Representation step: ∀k = 1, ..., K, compute the latent variable yk of Ck

as the first principal component ψ1 of Xk (or as the first normalized
eigenvector u1 of F̃kF̃t

k).
(c) Allocation step: ∀j = 1, ..., p, find ` such that ` = arg max

k=1,...,K
η2(xj ,yk).

Let Ck be the previous cluster of xj . Then if ` 6= k, C` ← C` ∪ {xj} and
Ck ← Ck\{xj}.

(d) If nothing changes in (c) then stop, else return to step (b).

Proposition 2 The center-based algorithm converges to a local optimum of
the homogeneity criterion H.

PROOF. We show that the homogeneity criterion H increases until con-
vergence. For that we have to prove that H(Pn,Yn) ≤ H(Pn,Yn+1) ≤
H(Pn+1,Yn+1), where the superscript n denotes the nth iteration of the al-
gorithm.

The first inequality is verified since the latent variable of a cluster Cn
k is

defined to maximize S and then S(Cn
k ,yn

k ) ≤ S(Cn
k ,yn+1

k ). Then by summing
up on k, we get H(Pn,Yn) ≤ H(Pn,Yn+1).

Finally according to the definition of the allocation step, we have∑K
k=1

∑
xj∈Cn

k
η2(xj ,yn+1

k ) ≤ ∑K
k=1

∑
xj∈Cn+1

k
η2(xj ,yn+1

k ), which proves the
second inequality. ¤

3 Applications

In this section we present some applications of the center-based clustering
algorithm for the clustering of categorical variables. In the first one we con-
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sider a simulated example in order to show the numerical performance of the
proposed approach. Then we apply it on a real categorical data set to show
the potential of the approach.

3.1 Simulation Study

In this simulation study we consider six binary variables x1, . . . , x6 and we
study four different states of relationship between them. The idea is to sim-
ulate at first three groups of variables which are well defined, that is the
variables within each cluster are strongly linked to each other and they are
weakly related to variables belonging to other clusters. They form the parti-
tion Q = (Q1,Q2,Q3) with Q1 = {x1, x2}, Q2 = {x3, x4} and Q3 = {x5, x6}.
Then we increasingly disrupt the underlying structure. Let a (resp. b, c, d, e, f)
denote a category of x1 (resp. x2, x3, x4, x5, x6) and P denote a probability
measure. To generate a contingency table, the following log-linear model (see
for instance Agresti [1]) is simulated:

log(P(x1 = a, . . . , x6 = f)) =(λx1
a + λx2

b + βx1x2
ab )+

(λx3
c + λx4

d + βx3x4
cd )+ + (λx5

e + λx6
f + βx5x6

ef ) + βx1x4
ad + βx3x6

cf (4)

where a, b, c, d, e, f ∈ {0, 1}. The parameters λx1
a , λx2

b , λx3
c , λx4

d , λx5
e , λx6

f rep-
resent the effect of each variable and the parameters βx1x2

ab , βx3x4
cd , βx5x6

ef are
interactions corresponding with cohesion terms in each group. The parame-
ter βx1x4

ad (resp. βx3x6
cf ) is used to add some interactions between categories of

variables belonging to different groups Q1 and Q2 (resp. Q2 and Q3). The first
state of mixing corresponds to the initial partition and is called “no mixing”.
Then we moderately mix the two groups by increasing the value of βx1x4

00 , it
will be refered as “moderate mixing”. In the third case named “strong mix-
ing”, the value of βx1x4

00 is high. In the last state called “very strong mixing”,
the values of βx1x4

00 and βx3x6
00 are high. Thus there is no more structure in the

data.
For each state of mixing we simulate N = 50 contingency tables, each cor-

responding to a global sample size n = 2000 using log-linear model (4), where
the values of the parameters are given in Table 1. Only the nonnull parameter
values are specified, all the remaining ones are set to zero. In this table the
value h of the effect parameters λx2

0 , λx4
0 , λx6

0 is generated with the univariate
uniform distribution on [1, 1.5] to get N slightly different contingency tables.

We apply the proposed algorithm on the generated categorical data.

• When there is no mixing between the groups, the proposed approach al-
ways recovers the underlying clusters.

• When the mixing between the groups is moderate, the algorithm misclassi-
fies one variable. We always obtain the partition {{x1, x2, x4}, {x3}, {x5, x6}}.

• When two groups are strongly mixed, the algorithm always misclassifies
two variables. The corresponding partition is {{x1, x4}, {x2, x3}, {x5, x6}}.
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Table 1. Values of the parameters of model (4) used in the simulations

State of mixing no mixing moderate mixing strong mixing very strong

Effect of each variable λ
x1
0 = λ

x3
0 = λ

x5
0 = 1

λ
x2
0 = λ

x4
0 = λ

x6
0 = h ∈ [1, 1.5]

Cohesion terms β
x1x2
00 = −1.5 β

x1x2
00 = −1.5 β

x1x2
00 = −0.8

β
x3x4
00 = −1.1 β

x3x4
00 = −1.2 β

x3x4
00 = −0.7

β
x5x6
00 = −0.9 β

x5x6
00 = −1 β

x5x6
00 = −0.9

Interaction terms 0 β
x1x4
00 = −0.9 β

x1x4
00 = −1.5 β

x1x4
00 = 0.9

β
x3x6
00 = −1.5

• When the mixing is very strong, not surprisingly the algorithm misclassifies
three variables since there is no more visible structure in the data. The
obtained partition is always {{x1}, {x2, x4, x5}, {x3, x6}}.

3.2 Real Data Application

We consider a real data set on a user satisfaction survey of pleasure craft op-
erators on the “Canal des Deux Mers” located in South of France which con-
tains numerous questions with numerical or categorical answers. This study
has been realized from June to September 2008. In this application we only
focus on fourteen categorical variables described in Table 2. The sample size
is n = 709 pleasure craft operators.

Table 2. Description of the 14 categorical variables

Name of the variable Description of the variable Categories
x1=“sites worth visiting” What do you think about information you were provided

with concerning sites worth visiting?
x2=“leisure activity” How would you rate the information given on leisure

activity?
x3=“historical canal sites” What is your opinion concerning tourist information

on historical canal sites (locks, bridges, etc.)?

satisfactory, unsatisfactory,
no opinion

x4=“manoeuvres” At the start of your cruise, were you sufficiently aware
of manoeuvres at locks?

x5=“authorized mooring” At the start of your cruise, were you sufficiently aware
of authorized mooring?

x6=“safety regulations” At the start of your cruise, were you sufficiently aware
of safety regulations?

yes, no

x7=“services” Please give us your opinion about signs you encoun-
tered along the way concerning information regarding
services.

satisfactory, unsatisfactory

x8=“number of taps” What do you think about number of taps on your trip? sufficient, unsufficient
x9=“cost of water” The general cost of water is ...
x10=“cost of electricity” The general cost of electricity is ...

inexpensive, average,
expensive

x11=“visibility of electrical outlets” What is your opinion of visibility of electrical outlets?
x12=“number of electrical outlets” What do you think about number of electrical outlets on

your trip?

sufficient, unsufficient

x13=“cleanliness” How would you describe the canal’s degree of cleanli-
ness?

clean, average, dirty

x14=“unpleasant odours” Were there unpleasant odours on the canal? none, occasional, frequent

In this case study, we have chosen to retain K = 5 clusters because it
provides a satisfactory mean correlation ratio value (0.68), that is the mean
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of the correlation ratio between the variables in each cluster and the corre-
sponding latent variable. Moreover the interpretation of the clusters seems to
be sound. This choice has also been confirmed by a bootstrap approach which
consists in generating multiple data replications of the data set and examin-
ing if the partition is stable. Table 3 describes the 5-clusters partition of the
variables. For instance cluster 4 contains variables dealing with the use of the
canal. As has already been pointed, MCA is used to have a first solution to
start the algorithm. Comparing the obtained solution with the MCA solution
shows that cluster 1 and 4 are merged and that only one iteration is needed to
obtain convergence to a local optimum corresponding to the partition given
in Table 3. The value in brackets of this table corresponds to the correlation
ratio between the variable and the latent variable representing the cluster it
belongs to. We see that the variables in a cluster are highly related with their
latent variable. Table 4 gives the values of the Tschuprow coefficient between
the variables of cluster 4 {x1, x2, x3} and the remaining ones. We see that
the variables are more related with variables in the same cluster than with
the variables in the other clusters. This means that dimension reduction is
possible. For instance in this case study we could reduce the number of the
questions in the survey by selecting one question in each cluster. Furthermore
we could replace the classical previous step of MCA for the clustering of the
individuals by the construction of the latent variables.

Table 3. Partition of the 14 categorical variables into 5 clusters (correlation ratio
between the variable and the latent variable of the cluster)

C1: environment C2: navigation rules C3: cost of services
cleanliness (0.68) manoeuvres (0.66) cost of water (0.84)

unpleasant odours (0.68) authorized mooring (0.71) cost of electricity (0.84)
safety regulations (0.69)

C4: use of the canal C5: available services
sites worth visiting (0.71) services (0.40)

leisure activity (0.69) number of taps (0.59)
historical canal sites (0.46) visibility of electrical outlets (0.65)

number of electrical outlets (0.71)

Table 4. Values of the Tschuprow coefficient between the variables of cluster 4 and
the remaining ones

x1 x2 x3 x4 x5 x6 x7 x8 . . . x14
x1 1.00 0.36 0.24 0.09 0.10 0.11 0.08 0.06 . . . 0.05
x2 0.36 1.00 0.20 0.10 0.11 0.13 0.11 0.07 . . . 0.03
x3 0.24 0.20 1.00 0.02 0.04 0.05 0.11 0.08 . . . 0.05
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4 Concluding Remarks

In this paper we propose an extension of an existing center-based algorithm
to the case of categorical variables. For numerical variables the homogeneity
criterion is calculated with squared correlations between the variables of the
cluster and its latent variable, which is defined as the first principal compo-
nent issued from PCA. For categorical variables correlation ratios and MCA
are then used respectively in place of squared correlations and PCA. The orig-
inality of the proposed approach lies in the fact that the center of a cluster of
categorical variables is a numerical variable. A simulation study shows that
the proposed method is efficient to recover simulated clusters of variables and
a real data application illustrates the practical benefits of the approach.

The initialization of the algorithm is actually reached by computing the
first K principal components issued from MCA. Another solution is to run
several times the algorithm with multiple random initializations and to retain
the best partition in sense of the homogeneity criterion. The initialization with
MCA can also be coupled with a rotation to start with a better partition.
For instance, the planar iterative rotation procedure proposed for MCA by
Chavent and al. [2] can be used. Another interesting perspective would be to
use this partitioning method in a divisive hierarchical approach to divide at
best a cluster into two sub-clusters. Both research on ascendant and divisive
hierarchical algorithms and a comparison of the different types of initialization
for the partitioning method are currently under investigation.

Source codes of the implementation in R are available from the authors.
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