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ABSTRACT

In this paper, we consider a semiparametric single index regression model involving a real dependent variable

Y , a p-dimensional quantitative covariable X and a categorical predictor Z which de�nes a strati�cation of the

population. This model includes a dimension reduction of X via an index X ′β. We propose an approach based

on sliced inverse regression in order to estimate the space spanned by the common dimension reduction direction

β. We establish
√

n-consistency of the proposed estimator and its asymptotic normality. Simulation study shows

good numerical performance of the proposed estimator in homoscedastic and heteroscedastic cases. Extensions to

multiple indices models, q-dimensional response variable and/or SIRα-based methods are also discussed. The case of

unbalanced subpopulations is treated. Finally a practical method to investigate if there is or not a common direction

β is proposed.

Keywords: dimension reduction, Sliced Inverse Regression (SIR), categorical covariate, eigen decomposition.

1 Introduction

Regression analysis studies the relationship between a response variable Y and a covariable X. In parametric

regression, the link function is a simple algebraic function of X, and least squares or maximum likelihood

methods (among others) can be applied in order to �nd the best global �t. In nonparametric regression,

the class of �tted functions is enlarged in order to obtain greater �exibility via sophisticated smoothing

procedures (such kernel or smoothing splines methods). However as the dimension p of the covariable X

becomes large, increased di�culties in modeling are often encountered. This is the well-known curse of

dimensionality.

In this framework of high dimensional regression, Duan and Li (1991) proposed the following semipara-

metric dimension reduction single index model:

Y = g(X ′β, ε), (1)

where the univariate response variable Y is associated with the p-dimensional regressor X (with expectation

E(X) = µ and covariance matrix V(X) = Σ) only through the reduced one dimensional variable X ′β. The
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error term ε is independent of X. The link function g and the vector β are unknown. We are interested

in �nding the linear subspace spanned by the unknown vector β, called the E�ective Dimension Reduction

(EDR) space.

Li (1991) introduced Sliced Inverse Regression (SIR) which is a computationally simple and fast method

to estimate the EDR space without assuming netiher the functional form of g nor the distribution of ε. This

method is based on some properties of the conditional distribution of X given Y and exploits a property of

the �rst inverse moment E(X|Y ); see for instance Duan and Li (1991), Carroll and Li (1992), Hsing and

Carroll (1992), Zhu and Ng (1995), Kötter (1996), Saracco (1997, 1999), Aragon and Saracco (1997), Bura

and Cook (2001a, 2001b) or Gather et al. (2002) among others.

Since a very large number of high-dimensional data sets do contain quantitative and categorical variables,

the introduction of discrete predictors in dimension reduction models appears to be very useful. An extension

of model (1) is then to incorporate a categorical predictor Z in addition to the quantitative covariable

X. Many covariates (often called factors) are qualitative in the nature such as gender, treatment, type of

population, . . . Generally, the categorical predictor Z can be viewed as a strati�cation variable with L �levels�

which identi�es a number of subpopulations. To introduce this qualitative predictor, we assume that Y and

(X, Z) are independent conditionally on (X ′β, Z). In terms of dimension reduction model, we assume that

the relation Y = f(X ′β, Z, ε) holds. Thus, when Z = l (for l = 1, . . . , L) it follows that

Y = g(l)(X ′β, ε), (2)

where g(l)(X ′β, ε) = f(X ′β, l, ε). For each subpopulation l, Y is related to the p-dimensional quantitative

regressor X only through the index X ′β. The quantitative predictor X ∈ <p is the covariable with respect

to which we will perform dimension reduction, while the discrete predictor Z is an additional categorical

covariable that is not included in the reduction of the dimension. This covariable may represent one or

more discrete covariables that identify L subpopulations. The categorical variable Z is not assumed to be

independent of X. It a�ects the conditional distribution of X given Z as follows: E(X|Z = l) = µ(l) and

V(X|Z = l) = Σ(l) for l = 1, . . . , L. It also in�uences the dependency between Y and the index X ′β via the

di�erent link function g(l) associated with each subpopulation l.

As in the standard SIR approaches, a design condition is required for the consistency of the method. In

our context, let us assume that X is elliptically symmetric for each subpopulation. Note that we then get

the following linear condition for each subpopulation:

(LC) For each l = 1, . . . , L, E(X ′v|X ′β, Z = l) is linear in X ′β for any v ∈ <p. (3)

In a similar dimension reduction model context with binary regressor, Carroll and Li (1995) presented

a new look at treatment comparisons. They considered the covariable Z as the treatment indicator with

the following proposed model Y = g(X ′β + θZ, ε). Estimates of β and θ are obtained without assuming

any functional form for g. Their method is based on the use of SIR in order to estimate the direction of β

(EDR directions estimated from all subpopulations are combined in order to obtain a �nal EDR direction),

followed by a partial-inverse mean matching method to estimate the treatment e�ect θ.

When the number L of levels of Z is greater than two, Chiaromonte et al. (2002) considered a similar

context to (2) and they presented a partial dimension reduction of X, for the regression of Y on (X, Z). They
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mentioned that this approach does not need to coincide with marginal dimension reduction for the regression

of Y on X, nor with conditional dimension reduction for the regression of Y on X within the subpopulations

identi�ed by Z. Assuming the simplifying hypothesis that the predictors' covariance structure is the same

across subpopulations:

Σ(l) = Σ?, l = 1, . . . , L, (4)

Chiaromonte et al. (2002) introduced a corresponding estimation method of the EDR space, based on SIR

technique and named Partial SIR. Hereafter, this common covariance assumption will be refered as the

�homoscedastic case� in constrast to the more general �heteroscedastic case�.

Several authors also worked on dimension reduction approaches in the presence of categorical predictor:

see for instance Li et al. (2003a), Yin (2005), Yin and Cook (2005), Liquet and Saracco (2007) or Wang and

Yin (2008).

In this paper, we propose a new method to estimate the EDR space which runs smoothly in the general

case (that is the heteroscedastic one, including the homoscedastic case). In Section 2, we introduce the

population version and the sample version of the corresponding estimator which is obtained from the eigen-

decomposition of a symmetric matrix without any pathological problem contrary to the estimator of Liquet

and Saracco (2007), see section 5.2 for details. Asymptotics results (consistency and asymptotic normality)

are given in Section 3. Possible extensions are described in Section 4: multiple indices model, multivariate

response Y , and SIRα-based approach. Section 5 provides a simulation study in order to show the numerical

behaviour of the proposed estimator and to compare it with the estimators introduced by Liquet and Saracco

(2007). The case of unbalanced subpopulations is also considered. Finally a practical method to investigate

if there is or not a common direction β is proposed. Finally, concluding remarks are given in Section 6.

2 The proposed estimator

The idea of the approach is to compute the EDR direction with SIR for each subpopulation and then

combine these directions to �nd the EDR direction of model (2) taking into account the whole population.

This approach works in both homoscedastic and heteroscedastic situations. First we describe the population

version of the method, and then we give its sample version.

2.1 Population version

Let us consider the L subpopulations de�ned by the categorical variable Z and let us assume the linearity

condition (LC) de�ned in (3). For each subpopulation l, let us de�ne the covariance matrix of interest,

denoted M
(l)
I , used in the usual SIR approach. For a monotonic transformation T (l) of the dependent

variable Y given Z = l, we have M
(l)
I = V(E(X|T (l)(Y ), Z = l)). In order to easily estimate this matrix

M
(l)
I , Li (1991) proposed a transformation T (l), called a slicing, which categorizes the response variable

into a new response with H(l) > 1 levels. The support of Y given Z = l is partitioned into H(l) non-

overlapping �xed slices s
(l)
1 , . . . , s

(l)
h , . . . , s

(l)

H(l) . Then in each subpopulation l, the matrix M
(l)
I can be written

as M
(l)
I =

∑H(l)

h=1 p
(l)
h (m(l)

h −µ(l))(m(l)
h −µ(l))′, where p

(l)
h = P (Y ∈ s

(l)
h |Z = l), m

(l)
h = E(X(l)|Y ∈ s

(l)
h , Z = l)

and µ(l) = E(X|Z = l). Let Σ(l) = V(X|Z = l). Under the linearity condition (LC), the eigenvector b(l)
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associated with the largest eigenvalue of the matrix (Σ(l))−1M
(l)
I is an EDR direction. We can now de�ne

the matrix B = [b(1), . . . , b(L)] which contains all the EDR directions obtained from all the L subpopulations.

We note b the eigenvector associated with the largest eigenvalue BB′. Then Theorem 1 guarantees that this

vector is an EDR direction.

Theorem 1 Assuming the linearity condition (LC) and model (2), the major eigenvector b of the matrix

BB′ is colinear with β.

PROOF of Theorem 1. For each subpopulation l = 1, . . . , L, b(l) is colinear with β, i.e. b(l) = αlβ, where αl

is a nonnull real. As B = [α1β, . . . , αLβ], we obtain BB′ =
∑L

l=1 α2
l ββ′ = ‖α‖2ββ′, where α = (α1, . . . , αL)′

and ‖.‖ is the norm associated to usual scalar product. Therefore the eigenvector b associated with the

strictly positive eigenvalue of BB′ is colinear with β. �

2.2 Sample version

We assume that an independent and identically distributed (i.i.d.) sample {(Xi, Yi, Zi), i = 1, . . . , n} is

available from model (2). In order to get an estimator of the matrices M
(l)
I , the usual idea of the SIR

approach is to substitute empirical versions of all the moments for their theoretical counterparts.

Let S(l) = {(Yi, Xi), i = 1, . . . , n(l) such that Zi = l} be the subsample corresponding to the subpop-

ulation l, where n(l) is the size of the subsample S(l). Let us denote I(l) the set of indices of the n(l)

observations in the subsample S(l). In each subpopulation, the empirical mean and covariance matrix of the

Xi's are respectively given by X
(l)

= 1
n(l)

∑
i∈I(l) Xi and Σ̂(l) = 1

n(l)

∑
i∈I(l)(Xi − X

(l)
)(Xi − X

(l)
)′. The

matrix M
(l)
I is estimated by M̂I

(l)
=

∑H(l)

h=1 p̂
(l)
h (m̂(l)

h − X
(l)

)(m̂(l)
h − X

(l)
)′ with p̂

(l)
h = 1

n(l)

∑
i∈I(l) I

[yi∈s
(l)
h ]

and m̂
(l)
h = 1

n(l)p̂
(l)
h

∑n(l)

i∈I(l) XiI[yi∈s
(l)
h ]

, where the notation I designates the indicator function. Then the

eigenvector b̂(l) associated with the largest eigenvalue of (Σ̂(l))−1M̂I

(l)
is the estimated EDR direction in the

subpopulation l. We construct the matrix B̂ = [b̂(1), . . . , b̂(L)]. The major eigenvector b̂ of the matrix B̂B̂′

is then the EDR estimated direction in model (2).

Remarks. In the usual SIR approach, the practical choice of the slicing function T is discussed in Li

(1991), Kötter (2000) and Saracco (2001). The user has to �x the slicing strategy and the number H of

slices. In the simulation study in Section 5, for each subpopulation l, the number H(l) of slices is �xed to

10 and each slice contains nearly the same number of observations. Note that in order to avoid the choice

of a slicing, kernel-based estimate of SIR has been investigated, see Zhu and Fang (1996) or Aragon and

Saracco (1997). However, these methods are hard to implement with regard to basic slicing one and are

computationally slow.

The link functions between the variables of interest and the common estimated index can be �rst non-

parametrically estimated with a kernel method for instance, and subsequently parametrically modelled if

necessary, see the simulation study in Section 5 for an illustration.
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3 Asymptotic results

In the sequel, the notation Zn →d Z means that Zn converges in distribution to Z as n →∞. The number

of observations in the hth slice for the subpopulation l is denoted n
(l)
h . The assumptions that are necessary

to state our results are gathered below for easy reference.

(A1) Each sample S(l), l = 1, . . . , L, is a sample of independent observations from the corresponding single

index model (2).

(A2) For each subpopulation l, the support of Y is partitioned into a �xed number H(l) of slices such that

p
(l)
h 6= 0, h = 1, . . . ,H(l).

(A3) For l = 1, . . . , L and h = 1, . . . ,H(l), n
(l)
h →∞ (and therefore n(l) →∞) as n →∞.

We obtain in Theorem 2 the convergence in probability of the estimator b̂ and we give its asymptotic

distribution in Theorem 3.

Theorem 2 Under linearity condition (LC) and (A1)-(A3), we have b̂ = b + Op(n−1/2).

PROOF of Theorem 2. For each subpopulation l and under the assumptions of the theorem, we have from

SIR theory of Li (1991) that each estimated EDR direction b̂(l) converges to an EDR direction b(l) at root n

rate: that is, for each S(l), l = 1, . . . , L, b̂(l) = b(l) + Op(n−1/2). Then we get B̂ = B + Op(n−1/2) and B̂B̂′ =

BB′ +Op(n−1/2). Therefore the major eigenvector of B̂B̂′ converges to the corresponding one of BB′ at the

same rate: b̂ = b + Op(n−1/2). From Theorem 1, b is colinear with β, then the estimated EDR direction b̂

converges to an EDR direction at root n rate. �

Theorem 3 Under linearity condition (LC) and (A1)-(A3), we have
√

n(b̂ − b) −→d W ∼ N (0,ΓW ),

where the expression of ΓW is given in (7).

PROOF of Theorem 3. Let C1 ⊗ C2 denote the Kronecker product of the matrices C1 and C2 (see for

instance Harville, 1997, for some useful properties of the Kronecker product). Let C = [c1, . . . , cq] be

a (p × q) matrix, where the ck's are p-dimensional column vectors. We note vec(C) the pq-dimensional

column vector: vec(C) =
(
c′1, . . . , c

′
q

)′
. We will note N+ the Moore-Penrose generalized inverse of the square

matrix N . The proof splits into three steps.

Step 1: Asymptotic distribution of vec(B̂). Under (A1)-(A3), asymptotic theory of SIR gives us

the following result for each subpopulation l = 1, . . . , L:
√

n(b̂(l) − b(l)) −→d U (l) ∼ N (0,Γ(l)), where the

expression of Γ(l) can be found in Saracco (1997) for instance. Then, we have

√
n(vec(B̂)− vec(B)) −→d vec


U (1)

...

U (L)

 ∼ N (0,Γ) where Γ =


Γ(1) 0

. . .

0 Γ(L)

 . (5)
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Step 2: Asymptotic distribution of vec(B̂B̂′). Remark that

vec(BB′) = vec(vec(BB′)) = vec(vec(BILB′))

= vec((B ⊗B)vec(IL)) = (vec(IL)′ ⊗ Ip2)vec(B ⊗B)

= (vec(IL)′ ⊗ Ip2)(IL ⊗KL,p ⊗ Ip)(vec(B)⊗ vec(B)),

where the vec-permutation matrix KL,p is equal to KL,p =
∑L

i=1

∑p
j=1(Eij ⊗ E′

ij) with Eij = ei,Le′j,p and

ei,L is the ith column of IL and ej,p the jth column of Ip. Thus we de�ne the function

f : RpL → Rp2

x 7→ A(x⊗ x),

where A = (vec(IL)′ ⊗ Ip2)(IL ⊗KL,p ⊗ Ip). The Jacobian matrix J associated to f is then equal to

J =
∂f(x)
∂x′

= A(K1,pL ⊗ IpL)[x⊗ ∂x

∂x′
+

∂x

∂x′
⊗ x]

= A(K1,pL ⊗ IpL)[x⊗ IpL + IpL ⊗ x].

Then using (5) and applying Delta-method, we obtain

√
n(vec(B̂B̂′)− vec(BB′)) −→d V ∼ N (0,ΓV = JΓJ ′). (6)

Step 3: Asymptotic distribution of b̂. The vector b̂ (resp. b) is the eigenvector associated to the

largest eigenvalue λ̂ (resp. λ) of B̂B̂′ (resp. BB′). Since B̂B̂′ = BB′ + Op(n−1/2) and using (6), according

to Lemma 1 of Saracco (1997), we obtain

√
n(b̂− b) −→d W = (BB′ − λIp)+V b ∼ N (0,ΓW )

with

ΓW = [b′ ⊗ (BB′ − λIp)+]ΓV [b⊗ (BB′ − λIp)+]. (7)

�

4 Various possible extensions of the proposed approach

We suggest some possible extensions of the proposed approach. The �rst one concerns the case of a multiple

indices model. In the second one, we suggest to use SIRα-based approach rather than classical SIR. The last

extension investigates the case when the dependent variable Y is multivariate.

4.1 Extension to multiple indices model

We can extend the proposed approach to multiple indices model. For each subpopulation l = 1, . . . , L, the

response variable Y is related to the p-dimensional quantitative regressor X only through the K indices:

Y = g(l)(X ′β1, . . . , X
′βK , ε) when Z = l. (8)

As in the single index model, the categorical variable Z is not independent of X: the conditional distribution

of X given Z is such that E(X|Z = l) = µ(l) and V(X|Z = l) = Σ(l) for l = 1, . . . , L. Moreover it also a�ects
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the dependency between Y and the indices X ′βk via speci�c link functions g(l) for each subpopulation l. In

other words, Y and (X, Z) are independent conditionally on (X ′β1, . . . , X
′βK , Z).

In this multiple indices model, we search for a basis that spans the EDR space E = Span(β1, . . . , βK).

As for the single index model, we seek with SIR for a basis of the EDR space for each subpopulation. In

order to get theoretical results, we need to adapt the linearity condition and we now assume:

(LC) For each l = 1, . . . , L, E(X ′v|X ′β1, . . . , X
′βK , Z = l) is linear in X ′β1, . . . , X

′βK for any v ∈ <p.

The eigenvectors b
(l)
1 , . . . , b

(l)
K associated with the largest K eigenvalues of the matrix (Σ(l))−1M

(l)
I are

EDR directions, where the matrix M
(l)
I has been de�ned in Section 2. Note that the number H(l) of slices

for each subpopulation must be greater than K in order to avoid arti�cial dimension reduction. We de�ne

the matrix B(l) = [b(l)
1 , . . . , b

(l)
K ] containing these EDR directions which form a Σ(l)-orthogonal basis of E.

Then the �rst K eigenvectors of the matrix B(l)B(l)′ form an Ip-orthonormal basis of E. We store them in

the p × L matrix B̃(l). We can now pool the matrices B̃(l) in the p × KL matrix B(L) = [B̃(1), . . . , B̃(L)].

The K eigenvectors associated with the largest K eigenvalues of B(L)B(L)′ are denoted by b̃1, . . . , b̃K .

Theorem 4 Assuming the linearity condition (LC) and model (8), the vectors b̃1, . . . , b̃K form an Ip-

orthogonal basis of the EDR space E.

PROOF of Theorem 4. Since the column vectors of B̃(l) form an Ip-orthonormal basis of E, we have

Span(B(L)) = E. Then the eigenvectors associated with the K largest eigenvalues of B(L)B(L)′ form an

Ip-orthonormal basis of E. �

Let us now brie�y describe the corresponding sample version. We estimate in each subpopulation sample

a Σ̂(l)-orthogonal basis of the EDR space via SIR: the �rst K eigenvectors of the matrix (Σ̂(l))−1M̂I

(l)
de�ned

in Section 2. We store them in the matrix B̂(l) = [b̂(l)
1 , . . . , b̂

(l)
K ]. Then we consider the �rst K eigenvectors

of the matrix B̂(l)B̂(l)′ which form an Ip-orthogonal basis of the estimated EDR space and we store them in

the matrix ̂̃B(l)

. Finally the �rst K eigenvectors of the matrix B̂(L)B̂(L)′ , denoted by
ˆ̃
b1, . . . ,

ˆ̃
bK provide an

Ip-basis of the estimated EDR space, where B̂(L) = [ ̂̃B(1)

, . . . , ̂̃B(L)

].

Asymptotics. Under the linearity condition (LC) and the assumptions (A1)-(A3), as for single index

model, we can show that the estimated EDR basis converges to an EDR basis at root n rate. Indeed,

SIR theory provides B̂(l) = B(l) + Op(n−1/2) for each subpopulation. Then the eigenvectors associated

with the K largest eigenvalues of the matrix B̂(l)B̂(l)′ converge at same rate to the corresponding ones of

B(l)B(l)′ . Analogously B̂(L) = B(L) + Op(n−1/2) and B̂(L)B̂(L)′ = B(L)B(L)′ + Op(n−1/2). Finally ˆ̃
bk = b̃k +

Op(n−1/2), k = 1, . . . ,K. Moreover, as for the single index model, using Delta-method, asymptotic results

of Tyler (1981) and Saracco (1997), the asymptotic normality of the eigenprojector onto the estimated EDR

space can be obtained, as well as the asymptotic distribution of the estimated EDR directions, associated

with eigenvalues assumed to be di�erent.

Choice of dimension K. In most applications the number K of indices is a priori unknown and hence

must be estimated from the data. From a practical point of view, we recommend to choose the dimension

K using classical SIR in each subpopulation (in order to con�rm that the true dimension of the whole EDR
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space is K). Several approaches have been proposed in the literature for SIR. Some approaches are based

on hypothesis tests on the nullity of the last (p − K) eigenvalues, see Li (1991), Schott (1994) or Barrios

and Velilla (2007). Another approach relies on a quality measure based on the square trace correlation

between the true EDR space and its estimate, see for instance Ferré (1998) or Liquet and Saracco (2008) for

a graphical bootstrap based approach.

4.2 Extension to SIRα-based approach

The proposed method described in Section 2 is based on SIR, also named SIR-I, which relies on a geometric

property of the conditional expectation (�rst moment) of X given T (Y ). Unfortunately, Cook and Weisberg

(1991) exhibited a pathological case for SIR-I; they showed that SIR-I is �blind� for �symmetric dependencies�.

Then, several methods based on higher inverse conditional moment have been proposed in the literature.

For instance, Li (1991) introduced the SIR-II approach relying on a property of V(X|T (Y )), and Cook and

Weisberg (1991) developed the sliced average variance estimator (SAVE) approach, see also Cook (2000). In

order to conjugate information from SIR-I and SIR-II approaches and for increasing the chance of discovering

all the EDR directions, Li (1991) proposed the SIRα method which is a suitable combination of the matrices

of interest of these methods. Note that SAVE can be viewed as a particular case of SIRα when α = 0.5.

An additional condition (called the constant variance assumption) is necessary for the consistency of the

SIR-II, SAVE and SIRα methods. In our framework with a categorical predictor and for a multiple indices

model, this assumption is written this way:

(CV) ∀l = 1, . . . , L, the conditional variance V(X|X ′β1, . . . , X
′βK , Z = l) is assumed to be non-random.

Alternatively, we can make the assumption that, for each subpopulation l, X has a multivariate normal

distribution which implies that (LC) and (CV) conditions are satis�ed.

Let us give now a brief overview of the SIR-II and SIRα approaches. For the subpopulation l, the SIR-

II matrix of interest is de�ned by M
(l)
II = E

{(
V

(l)
T −E(V (l)

T )
)

(Σ(l))−1
(
V

(l)
T −E(V (l)

T )
)′}

where V
(l)
T =

V(X|T (Y ), Z = l). Under model (8) and (LC) and (CV) assumptions, it can be shown that the eigenvectors

associated with the largest K eigenvalues of (Σ(l))−1M
(l)
II are some EDR directions. In SIRα approach, we

consider, for the subpopulation l, the eigen-decomposition of the matrix (Σ(l))−1M
(l)
α where α ∈ [0, 1] and

M
(l)
α = (1−α)M (l)

I Σ−1M
(l)
I +αM

(l)
II . It can also be proved that the eigenvectors associated with the largest

K eigenvalues of (Σ(l))−1M
(l)
α are some EDR directions, see Li (1991). Let us remark that, when α = 0

(resp. α = 1), SIRα is equivalent to SIR-I (resp. SIR-II).

For each subpopulation such that Z = l, when transformation T is a slicing which partitions the support

of Y is partitioned into H(l) > K non-overlapping slices s
(l)
h , the matrix M

(l)
II is now written as M

(l)
II =∑H(l)

h=1 p
(l)
h

(
V

(l)
h − V

(l)
)

(Σ(l))−1
(
V

(l)
h − V

(l)
)

, where V
(l)
h = V(X|Y ∈ s

(l)
h , Z = l) and V

(l)
=

H(l)∑
h=1

p
(l)
h V

(l)
h .

It is straightforward to estimate the matrices M
(l)
II and M

(l)
α by substituting empirical versions of the moments

for their theoretical counterparts, and therefore to obtain the estimation of the EDR directions. Each

estimated EDR direction converges to an EDR direction at root n rate when the corresponding eigenvalues

are assumed to be distinct, see for instance Li (1991) or Saracco (2001). Asymptotic normality of the SIRα

estimates has been studied by Gannoun and Saracco (2003a).
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The practical choice of α can be based on test approach (see Saracco, 2001) or on cross-validation criterion

(see Gannoun and Saracco, 2003b). A graphical bootstrap based approach has also been developped by

Liquet and Saracco (2008) in order to select simultaneously the couple (α, K).

Hence, an extension of the proposed approach is to replace the SIR-I estimators of the EDR directions

by the corresponding SIRα ones in the population and sample versions. Then, the corresponding version

will be insensitive to symmetric dependence in the model for a good choice of α.

4.3 Extension to a multivariate dependent variable Y

Several authors (see for instance Aragon, 1997, Hsing, 1999, Li et al., 2003b, Lue, 2009) extented the

univariate model (1) to a multivariate response variable: Y is assumed to be q-dimensional with q > 1, the

corresponding link function is then <q-valued. A few methods based on SIR-I approach have been developed

in this multivariate context. Saracco (2005) and Barreda et al. (2007) focused on some extensions of the

existing multivariate SIR approaches relying on SIRα method.

In our framework, we consider a multivariate extension of model (8) in which Y ∈ <q . Let Y j be the jth

component of Y . We can now introduce the multivariate semiparametric regression model: for l = 1, . . . , L,

Y =


Y 1 = g

(l)
1 (X ′β1, . . . , X

′βK , ε
(l)
1 ) when Z = l,

...

Y q = g
(l)
q (X ′β1, . . . , X

′βK , ε
(l)
q ) when Z = l,

(9)

where the error terms εj are assumed independent of X and the link functions gj 's are unknown real-valued

functions. As in model (1), only the EDR space is identi�able. Straightforwardly, we can extend our proposed

method to this multivariate framework. The idea is to use a multivariate SIR method rather than SIR-I in

order to get an EDR basis for each subpopulation. As in Liquet and Saracco (2007), we suggest to use the

PMSα approach which is a Pooled Marginal Slicing method based on SIRα; see Saracco (2005) for details.

5 Simulation studies

In this section we perform with R simulation studies to illustrate the numerical behaviour of the new proposed

approach and to compare it to the homoscedastic and heteroscedastic approaches developped by Liquet and

Saracco (2007). We also compare these approaches to a naive SIR-I approach which consists in estimating

the EDR directions without using the information of the categorical variable Z and perform a simple SIR-I

method on the global sample. All the source codes are available from the authors by E-mail.

First we introduce the e�ciency measure which will be used to compare the performances of these

methods. Then we brie�y recall the homoscedastic and heteroscedastic approaches of Liquet and Saracco

(2007). In the following, we consider two single index models (K = 1): the �rst one with a categorical

variable with L = 2 levels, and the other one with a categorical variable with 3 levels (L = 3). Then we

present some results for a two indices model (K = 2) with L = 2. The case of unbalanced subpopulations is

also treated. Finally a practical method to investigate if there is or not a common direction β is proposed.
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5.1 E�ciency measure

Let b̂1, . . . , b̂K be the K estimated EDR directions. We note B̂ = [b̂1, . . . , b̂K ] and Ê = Span(B̂) the

linear subspace spanned by the b̂k's. Let B = [β1, . . . , βK ] be the matrix of the true directions and let

E = Span(B). Let PE (resp. PÊ) be the Ip-orthogonal projector onto E (resp. Ê) de�ned as follows:

PE = B(B′B)−1B′ and PÊ = B̂(B̂′B̂)−1B̂′. The quality of the estimate Ê of E is measured by:

m(E, Ê) = Trace(PEPÊ)/K.

This measure belongs to [0, 1] with m(E, Ê) = 0 if Ê and E are Ip-orthogonal and m(E, Ê) = 1 if Ê = E.

Then the closer this value is to one, the better is the estimation. When K = 1 (single index model), this

measure is the squared cosine of the angle formed by the vectors β and b̂.

5.2 The estimator of Liquet and Saracco (2007)

Let us brie�y recall the principle of the estimator based on PMSα approach introduced by Liquet and Saracco

(2007). For sake of simplicity, we only consider the case K = 1. The idea is to pool the �marginal� SIRα

matrices of interest obtained for each component Y j of Y and for each level l of Z. Then, the population

version of the pooled matrix of interest is de�ned as follows:

MP
q,L =

q∑
j=1

w̃(j)
q

{
L∑

l=1

w
(l)
L

(
Σ(l)

)−1

M
(j,l)

α(j,l)

}
, (10)

where the matrices M
(j,l)

α(j,l) are the Mα matrices corresponding to the subpopulation l for the component

Y j of Y , that is the matrix of interest of SIRα de�ned for the pairs (X, Y j) given Z = l. The weights

{w(l)
L , l = 1, . . . , L} are the probability of the events Z = l, and the weights {w̃(j)

q , j = 1, . . . , q} are some

positive weights such that
∑q

j=1 w̃
(j)
q = 1. The parameter α of each Mα matrix can be individually adapted

and is denoted by α(j,l).

In the homoscedastic case (4), the expression in (10) can be written this way (Σ?)−1MP
q,L, where MP

q,L =∑q
j=1 w̃

(j)
q

{∑L
l=1 w

(l)
L M

(j,l)

α(j,l)

}
. Under some classical assumptions in dimension reduction framework, Liquet

and Saracco (2007) showed that the eigenvector associated with the largest eigenvalue of (Σ?)−1MP
q,L is an

EDR direction. The sample version can be easily obtained as for usual SIR approach by substituting empirical

versions of all the moments for their theoretical counterparts. The estimated EDR direction b̂ (principal

eigenvector of (Σ̂?)−1M̂P
q,L) converges to the EDR direction b (principal eigenvector of (Σ?)−1

MP
q,L) at root

n rate. In the sequel of the simulation study, the values of the α(j,l)'s are �xed to zero, the corresponding

method will be called �homo�.

In the heteroscedastic case, we consider the eigenvalue decomposition of the matrixMP
q,L de�ned in (10)

under the design condition. Contrary to the homoscedastic case, this matrix has no reason to be symmetric

(with respect to a speci�c inner product) or positive de�nite. However, for each matrix
(
Σ(l)

)−1
M

(j,l)

α(j,l) , the

eigenvector associated with the largest eigenvalue is an EDR direction. Then, since the matrix MP
q,L is a

convex combination of these matrices, there exists an eigenvector b which is an EDR direction associated with

a real positive eigenvalue λ. From an algebraic point of view, there is no guarantee that this corresponding

eigenvalue is the largest one (in descending order of modulus, since it is possible to obtain complex eigen-

elements). Geometrically speaking, one can �nd pathological cases in which the largest eigenvalue is not
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associated with an EDR direction, see for instance the example given in the Appendix of Liquet and Saracco

(2007). Unfortunately, to the best of our knowledge, there is no characterization of these pathological cases,

nor necessary conditions allowing us to avoid these cases. The matrix MP
q,L is estimated by substituting

empirical versions of the moments for their theoretical counterparts. As in the homoscedastic case, the root

n consistency of the estimated EDR direction to the corresponding EDR direction has been established. In

the sequel of the simulation study, this method is named �hetero� with the values of the α(j,l)'s �xed at zero.

5.3 Single index model (K = 1)

In the simulation study, we �rst consider a single index model with categorical predictor with L = 2 levels,

then we will consider an underlying model which contains a categorical predictor with L = 3 levels. For

each simulated sample, we estimate the EDR direction with the four methods speci�ed below: the proposed

new method (named �new� hereafter), the �homo� and �hetero� methods of Liquet and Saracco (2007), and

the naive SIR-I method (named �SIR� hereafter). The quality measure of each estimated direction is then

evaluated. In the following, we only present results obtained in the heteroscedastic setup which is the

most important one in practice. Note that simulations have been made in the homoscedastic setup and

have provided good values of the quality measure for the three methods �homo�, �hetero� and �new�. None

method appears to be uniformly better than the others, all the methods provide the same high level of

performance. This is not surprising since the homoscedastic setup is included in the heteroscedastic one.

In the heteroscedastic case, only the �new� and �hetero� methods should provide the best performance, the

�homo� (which relies on an homoscedastic assumption) and �SIR� (which does not use the information from

the categorical covariate) approaches should have di�culties to retrieve the EDR direction.

5.3.1 Categorical predictor with L = 2 levels

In this simulation, we generate simulated data from the following semiparametric regression model: Y = ( 1
8β′X)3 + ε1 for Z = 1,

Y = −(β′X)/2 + ε2 for Z = 2,
(11)

where X|Z = l (for l = 1, 2) follows a 5-dimensional normal distribution with means µ(l) = 05 and randomly

generated covariance matrices Σ(l). In this paper, the way of generating the matrices Σ(l) is the following.

A matrix Λ(l) is randomly �lled with numbers belonging to [−2, 2]. Then Σ(l) = Λ(l)Λ(l)′ + 0.5Ip in order

to avoid problem of inversion of Σ(l). Each random error term εl is independent of X given Z = l and

εl ∼ N (0, 0.72) for l = 1, 2. We take β = (1, 2,−1,−2, 0)′.

An illustrated example. A sample of size n = 200 was generated from model (11) with the same number

of observations in each subsample de�ned by the levels of Z: n(1) = n(2) = 100. The EDR direction was

estimated with the di�erent methods (�SIR�, �hetero�, �homo� and �new�). As �SIR� does not give good

estimation, we only give the eigenvalues for the three other methods: λhomo = (1.70, 0.83, 0.29, 0.08, 0.01),

λhetero = (0.88, 0.06, 0.06, 0.01, 0.01) and λnew = (0.99, 0.01, 0, 0, 0). Clearly, there is a visible jump between

the �rst and the second eigenvalues, then we retain only one EDR direction. The two methods, �hetero� and

�new�, give excellent estimations with m(E, Ê) ' 0.99. The �homo� method provides m(E, Ê) ' 0.84. Note
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that the naive approach �SIR� fails : m(E, Ê) ' 0.40. The corresponding estimated EDR directions for

the �hetero�, �homo� and �new� approaches, are respectively b̂homo = (0.43,−0.47, 0.48, 0.22, 0.56), b̂hetero =

(−0.34,−0.64, 0.39, 0.56, 0.08), and b̂new = (−0.35,−0.64, 0.39, 0.56, 0.08). The plots, for each subpopulation

l, of the response variable Y versus the true (resp. estimated) common index X ′β (resp. X ′b̂new) are

represented on the left (resp. right) handside of Figure 1. In the right handside of this �gure, we exhibit

the smoothing spline estimates of the link functions g(l) between the variables of interest Y and the common

estimated index when Z = l. On the left hand side, the true link function g(l) has been plotted.

Figure 1: On the left: plots of the true index versus (X ′β) Y . On the right: plots of the estimated index

(X ′b̂) versus Y with plots of the estimated link functions for Z = 1 (solid line) and for Z = 2 (dotted line).

Results of a simulation study. From model (11) , N = 500 samples of size n = 200 (with n(1) = n(2) =

100) were generated. For each simulated sample, the EDR direction was estimated with the four methods:

�homo�, �hetero�, �new� and �SIR�. Then, in order to compare the di�erent estimates, we calculated, for

each estimation, the corresponding e�ciency measures. We represent on the left handside of Figure 2 the

boxplots of the N = 500 squared cosines obtained with the four methods. Moreover we observe that the

naive �SIR� approach can not recover the EDR direction. The �new� method gives as best results as the

�hetero� method, but it has the advantage not to su�er from pathological cases. On the contrary with the

�hetero� method, there is no guarantee that the eigenvalue corresponding to the EDR direction is the largest

one (in descending order of modulus). The �homo� method does not give good measures of quality, which

highlights the fact that taking the heteroscedastic setup into account improves the estimation of the EDR

direction. On the right handside of Figure 2 we plot the squared cosines obtained with �hetero� versus the

ones provided by �new�. This graphic shows that the �new method� seems to be slightly better than the

�hetero� one.
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Figure 2: On the left: boxplots of the squared cosines for the four di�erent methods for n(1) = n(2) = 100.

On the right: comparison of the squared cosines for the �hetero� and �new� methods.

5.3.2 Categorical predictor with L = 3 levels

We generate here simulated data from the following semiparametric regression model with a categorical

covariate having L = 3 levels: 
Y = β′X + ε1 for Z = 1,

Y = (β′X/5)3 + 0.1ε2 for Z = 2,

Y = −(β′X)/2 + ε3 for Z = 3,

(12)

where X|Z = l (for l = 1, . . . , 3) follows a 5-dimensional normal distribution with mean µ(l) = 05 and

randomly generated covariance matrices Σ(l) as in the previous subsection. Each random error term εl, l =

1, 2, 3 is independent of X given Z = l and εl ∼ N (0, 0.92) for l = 1, 2. We take β = (1, 1,−1,−1, 0)′.

An illustrated example. A sample of size n = 450 was generated from model (12) with the same

number of observations in each subsample de�ned by Z (n(1) = n(2) = n(3) = 150). The EDR direction

was estimated with the four di�erent methods (�homo�, �hetero�, �new� and naive �SIR�). Not surprisingly,

both methods, �hetero� and �new�, give excellent estimations with m(E, Ê) ' 0.99. The �homo� method

gives m(E, Ê) ' 0.80. Note that the naive �SIR� approach fails with m(E, Ê) ' 0.56. The plots, for each

subpopulation l, of the response variable Y versus the estimated index X ′b̂new are represented on the right

handside of Figure 3. In this graphic, we add the smoothing spline estimates of the link functions g(l) between

the variable of interest Y and the common estimated index when Z = l. On the left handside of Figure 3,

we represent the scatterplot of the (X ′
iβ, Yi)'s and the true link functions g(l) for l = 1, 2, 3.

Results of a simulation study We represent on the left of Figure 4 the boxplots of the N = 500 squared

cosines obtained with the four methods with sample sizes n(1) = n(2) = n(3) = 150. For this simulation study,

one can observe that neither the naive �SIR� approach nor the �homo� method recover the EDR direction.

The �new� and �hetero� methods achieve the best performances.
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Figure 3: On the left: plot of the true index (X ′β) versus Y . On the right: plots of the estimated index

(X ′b̂) versus Y with plots of the estimated link functions for Z = l (l = 1, 2, 3).

Figure 4: On the left: boxplots of the squared cosines for the four di�erent methods for n(1) = n(2) = n(3) =

150. On the right: comparison of the squared cosines for the �hetero� and �new� methods.
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5.4 A multiple indices model (K = 2)

In this simulation, we generate simulated data from the following semiparametric regression model with two

indices X ′β1 and X ′β2 and in presence of a categorical predictor with L = 2 levels: Y = (X ′β1) exp (X ′β2) + ε1 for Z = 1,

Y = −(X ′β1) exp (X ′β2) + ε2 for Z = 2,
(13)

where X|Z = l (for l = 1, 2) follows a 5-dimensional normal distribution with mean µ(l) = 05 and randomly

generated covariance matrices Σ(l) as in the previous subsection. Each random error term εl is standard

normally distributed and is independent of X given Z = l. We take β1 = (1, 1, 0, 0, 0)′ and β2 = (0, 0, 0, 1, 1)′.

Results of a simulation study. From model (13), N = 500 samples of size n = 400 (with n(1) = n(2) =

200) were generated. For each simulated sample, the EDR direction was estimated with the four methods:

�homo�, �hetero�, �new� and �SIR�. We represent on Figure 5 the boxplots of the N = 500 e�ciency measures

obtained with each method. Not surprisingly, one can again observe that the naive �SIR� and �homo�

Figure 5: On the left: boxplots of the e�ciency measures for the four di�erent methods with n(1) = n(2) =

400. On the right: comparison of the e�ciency measures for the �hetero� and �new� methods.

approaches fail to recover the EDR direction. Both �new� and �hetero� methods outperform the previous

ones since they are devoted to heteroscedastic setup.

5.5 Case of unbalanced subpopulations

We consider here the case where the L subpopulations do not have the same weigths, that is the probability

of the events Z = l, p(l) := P(Z = l), can strongly di�er. Then the associated subsample sizes n(l) can also

be di�erent. Let us assume that the sampling scheme is such that p̂(l) := n(l)/n = p(l) + Op(n−1/2) where

n =
∑L

l=1 n(l) is the global sample size. We can notice that in the sample version of the pooled matrix of

interest (10) of the �hetero� method, the weights p̂(l) are used. It appears interesting to also take the weights

p(l) or p̂(l) into account in the population and sample versions of the �new� method. For that, we de�ne the
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diagonal matrix D which contains the probabilities p(l). Then it can be shown that the eigenvector associated

with the strictly positive eigenvalue of BDB′ is an EDR direction. Let us introduce the diagonal matrix

D̂ of the p̂(l)'s. The sample version of BDB′ is obtained by substituting the empirical matrices by their

theoretical counterparts. From a theoretical point of view, B̂ = B+Op(n−1/2) and D̂ = D+Op(n−1/2), then

the estimated EDR direction converges at root n rate to the true one. The asymptotic distribution of the

estimator can aslo be obtained with a similar proof given in Section 3 for the balanced subpopulations case.

In this sequel this adaptation of the �new� method will be named �weighted new� method. We illustrate in

the following the good numerical behaviour of the �weighted new� method with a simulation study.

We consider the single index model given in (11). We generate N = 500 data replications of sample of

size n = 200 with n(1) = 70 and n(2) = 130. Figure 6 shows that both methods �homo� and �SIR� again

fail to recover the EDR direction. On the contrary the �hetero� and �new� methods provide high e�ciency

measures. Furthermore we can see that taking into account the proportion of observations in each subsample

increases the quality measure. We also observed on other simulations (not exhibited here) that the �weighted

new� method outperforms the �new� one when the ratio p̂(1)/p̂(2) hardly di�ers from one.

Figure 6: Boxplots of the e�ciency measures for �homo�, �hetero�, �new�, �weighted new� and �SIR� methods

with unbalanced samples (n(1) = 70 and n(2) = 130).

5.6 A practical way to investigate a common EDR direction

Let us consider here a modi�ed version of the semiparametric regression model (12):
Y = (β + θ1γ1)′X + ε1 for Z = 1,

Y = ((β + θ2γ2)′X/5)3 + 0.1ε2 for Z = 2,

Y = −(β′X)/2 + ε3 for Z = 3.

(14)

In this model, the dimension reduction direction in each subpopulation can be di�erent contrary to model

(12). We take β = (1, 1,−1,−1, 0)′, γ1 = (1, 1, 0, 1, 1)′ and γ2 = (−1, 0, 1, 0,−1)′. The parameters θ1 and

θ2 which belong to [0;+∞[ allow to control the presence of a common dimension reduction direction in the
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model.

• When θ1 = θ2 = 0, there is a common dimension reduction direction β in each subpopulation. Hence,

in practice, we can apply our approach on these global sample (with all subpopulations).

• When θ1 > 0 and θ2 = 0, there is only a common dimension reduction direction β in subpopulations

such that Z = 2 or 3. From a practical point of view, in order to recover the two dimension reduction

directions (β + θ1γ1 for the �rst subpopulation, and β for the two other ones), we can apply SIR on

the �rst subpopulation (such that Z = 1) and our approach on the two remaining subpopulations.

• When θ1 > 0 and θ2 > 0, there is no common dimension reduction direction in these 3 subpopulations.

Hence, we have to apply SIR on each subpopulation in order to estimate the three directions, β + θ1γ1

(subpopulation 1), β + θ2γ2 (subpopulation 2) and β (subpopulation 3).

In this subsection, we propose a practical approach to investigate if there is a common dimension reduction

direction for various subpopulations. For simplicity's sake, we limit the presentation to single index model

(that is when K = 1). The idea is to use the following measure which will indicate if the direction estimated

with our approach (based on some L subpopulations) is common for these L subpopulations (i.e. is in the

intersection of the individual dimension reduction spaces of each subpopulation). Let us denote by P̂l the

Ip-orthogonal projector onto Êl, the estimated EDR space of the subpopulation such that Z = l. Let us

recall that b̂ is the direction estimated by our approach based on the L subpopulations. We consider (here

for L subpopulations) the proximity measure

Tn =

∣∣∣∣∣
∣∣∣∣∣

L∏
l=1

P̂lb̂

∣∣∣∣∣
∣∣∣∣∣

which belongs to [0,1] since ||̂b|| = 1. If Tn is close to 1, b̂ can be considered as a common dimension reduction

direction, either there is no common dimension reduction direction between the considered subpopulations

(with our approach based on SIR). In order to view the variability of Tn, we consider B = 1000 bootstrap

replications of the observations, by resampling with replacement from the original data set. We calculate for

the ath bootstrap sample P̂
(a)
l , b̂(a) and then Tn(a) = ||

∏L
l=1 P̂

(a)
l b̂(a)||. Finally, we provide a histogram of

the Tn(a)'s values.

To illustrate our proposed practical criterion, let us illustrate its numerical behaviour on three examples

(for various values of θ1 and θ2). For each example, a sample of size n = 300 is generated from model (14).

For each sample, we �rst evaluate Tn =: T
(1,2,3)
n = ||

∏L=3
l=1 P̂lb̂|| and its bootstrap distribution. If a common

direction for the L = 3 subpopulations is detected (with a value of T
(1,2,3)
n close to one), the procedure is

�nished. If a common direction for the L = 3 subpopulations is not suspected, then we evaluate, for the

couples (i, j) in the set {(1, 2), (1, 3), (2, 3)}, the following statistic T
(i,j)
n and its bootstrap distribution in

order to detect a possible common direction between only two subpopulations: T
(i,j)
n = ||P̂iP̂j b̂

(i,j)|| where

b̂(i,j) is the estimator b̂ calculated using the data from the subpopulations such that Z = i and Z = j.

Example 1: θ1 = θ2 = 0. We clearly observe in Figure 7 that T
(1,2,3)
n is close to one. Then we can

conclude that the common dimension reduction direction b̂ has to be retained for the L = 3 subpopulations.
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Figure 7: Evaluation of T
(1,2,3)
n (bold vertical line) and its bootstrap distribution (histogram) for a sample

from model (14) with θ1 = θ2 = 0.

Example 2: θ1 > 0 and θ2 = 0. We plainly observe in Figure 8 that T
(1,2,3)
n , T

(1,2)
n and T

(1,3)
n have values

clearly lower than one contrary to T
(2,3)
n which has a value close to one. Considering the �rst three graphics,

it seems that there is no common dimension reduction direction between the 3 subpopulations, as well as

between the subpopulations such that Z = 1 and Z = 2, and between the subpopulations such that Z = 1

and Z = 3. The last graphic allows us to conclude that a common dimension reduction direction b̂(2,3) has to

be retained for the subpopulations such that Z = 2 and Z = 3. For the subpopulation Z = 1, the dimension

reduction direction can be estimated via SIR using the subsample such that Z = 1.

Example 3: θ1 > 0 and θ2 > 0. In this example, there is no common dimension reduction direction in

the model. This is con�rmed from a graphical point of view in Figure 9 with the values of T
(1,2,3)
n , T

(1,2)
n ,

T
(1,3)
n and T

(2,3)
n clearly lower than one. Then we have to apply SIR individually on each subsample.

6 Concluding remarks

In this paper we propose a new estimator of the EDR space in a semiparametric regression model in presence

of a categorical covariate which de�nes a strati�cation of the population. The main advantage of the proposed

method is that the estimator can be used in homoscedastic and heteroscedastic setups. Moreover it has good

theoretical properties and by this way it does not su�er from pathological cases. Root n consistency and

asymptotic normality have been obtained. Extensions to multivariate indices model, multivariate dependent

variable Y and SIRα-based approach have been described. We have also adapted our estimate to the case of

unbalanced subpopulations. Simulation studies showed a good behavior of the proposed estimator in various

situations. Moreover we have proposed a practical procedure in order to determine if the underlying model

with a common EDR space for all the L subpopulations is adequate for the available data. The method has

been implemented in R and the corresponding codes are available from the authors.
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Figure 8: Evaluation of T
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Figure 9: Evaluation of T
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(1,3)
n and T

(2,3)
n (bold vertical lines) and their bootstrap distributions

(histograms) for a sample from model (14) with θ1 > 0 and θ2 > 0.
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