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Abstract

We present a two steps process to analyze complex data called sym-
bolic objects. At the first step we find the best symbolic description
representing groups of individuals retrieved from a relational database.
We define operators to retrieve these groups of data and we present a
generalization/specialization process to describe each of them. At the
second step, we perform a classification of these groups according to
their symbolic description. We define a divisive clustering method in
the particular case of symbolic data.

Key Words : Symbolic Data Analysis, Relational Database, Gener-
alization/Specialization, Divisive hierarchical clustering.

1 Introduction

First, we consider initial data stored in a relational database which can
be voluminous. Users can be either interested in analyzing these data or
in some cases they want to perform more sophisticated analysis based on
aggregation into groups. Such analyses can’t be performed with classical
methods. We present here a two steps process that enables easily a user to
answer to more sophisticated questions.

The first step consists in retrieving groups of individuals and to define a
good generalization which summarizes each group of items. In the area of
Knowledge Discovery in Databases, some authors deal with a similar prob-
lem, called query summarization. Hwang and al. (see [8]) refer to several
approaches to summarize efficiently a set of tuples in relational databases
(using generalization trees on domains of attributes). In the area of Machine
Learning, Michalski (see [10]) has defined generalization rules to summarize
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a set of classical descriptions. The way we build descriptions of groups is
guided by a volume criterion which reduces over-generalization. Indeed, the
quality of the descriptions produced is of great importance as they are used
as input for the clustering method.

The input of the clustering step are the symbolic data performed by
the generalization step. Data are called symbolic when they are described
on each variable with a set of values or with a set of weighted values. We
propose a divisive clustering algorithm which reverses the process of agglom-
erative hierarchical clustering by starting with all objects in one cluster and
subdividing successively each cluster into smaller ones. Williams and Lam-
bert (see [14]) proposed a first monothetic divisive clustering method in the
particular case of binary data. A cluster is called monothetic if a conjunc-
tion of logical properties is both necessary and sufficient for membership
in the cluster (see [11]). More recently, a parametric monothetic clustering
method has been proposed for quantitative data (see [4]).

In this paper, we use a non parametric monothetic clustering method
(see [3]) in cases of symbolic data, which aims at finding at each step a
partition and a symbolic interpretation of the corresponding clusters.

2 Generalization of groups of individuals retrieved
from a relational database

2.1 Selection of a population from the database

A statistical population is a set of units (also called individuals) having
common properties. In our process, we consider the initial population, called
Ω, to be the result of a user-query which defines the task-relevant data and
its kind of grouping. Each individual belongs to a class, according to its value
observed on the second attribute C of the select clause. So we associate to
Ω a structure into J groups and the attribute C is such that :

∀ω ∈ Ω, j ∈ C(ω)⇔ ω ∈ Gj

Ω is described by a list of variables Y = (Y1, . . . , Yi, . . . , Yp). Each Yi : Ω→
Oi corresponds to an attribute in the select clause and Oi is the space of
observations of Yi, deduced from the associated column of the extension of
the query (Table 1).

Dealing with small datasets, we perform the user-query and all the se-
lected information is stored in working memory. When the amount of data



C Y1 . . . Yi . . . Yp

ω1 . . . . . .

. . . . . . . . .

ωj C(ωj) . . . . . . Yi(ωj)
. . .

ωN

Table 1: Result of the sql query

is great, we have considered the use of random sampling. As we don’t previ-
ously know the size of the population, we perform a random sampling using
reservoir algorithm defined by Waterman (see [13]). The advantage of such
an algorithm is that it uses only one pass to sample the result of the query.

We adapt this kind of algorithm to sample individuals from each group
G1, . . . , GJ . A reservoir of size m is defined for each Gj . The random
sampling is performed independently for each group G1, . . . , GJ in the same
pass.

2.2 Representation of a group Gj by an assertion

The symbolic description model used as output of our generalization is the
model of symbolic objects introduced by E. Diday (see [5]). Here we focus
on building particular kinds of symbolic objects, called assertions, which
deal with classes (or sets) of individuals.

The output of the generalization/specialization process is the set A =
{a1, . . . , aJ} where aj is the assertion built from Gj . An assertion aj is
described on p variables (Y1, . . . , Yi, . . . , Yp), where :

Yi : A → Di

and Di can be P(Oi) or the set of probability distributions defined on Oi.
An assertion aj is described on Y = (Y1, . . . , Yp) by a vector :

Y (aj) = (Y1(aj), . . . , Yi(aj), . . . , Yp(aj))

also noted :
δj = (δ1

j , . . . , δ
i
j , . . . , δ

p
j )



Y1 . . . Yi . . . Yp

a1 . . .

. . . . . .

aj . . . . . . Yi(aj) = δi
j

. . .

aJ

Table 2: Data matrix obtained by the generalization process

The output of our generalization/specialization process can be repre-
sented by the following data matrix (Tab. 2) where δi

j ∈ Di.
For example, we want to cluster positions in a factory according to in-

formations on employees’ careers. Let Y1 = Training, Y2 = YearsService and
Y3 = Age, be the variables defined in the select clause of the sql-query. Ω
is defined as the set of employees stored in the database. A is the set of
assertions corresponding to positions in the factory. An assertion aj ∈ A
corresponds to the set of employees belonging to the same jth position. The
description δj of assertion aj could be the following :

δj = ({University, Engineering school}, [7, 15], [34, 40])

This assertion can also be represented as a conjunction of properties :

aj : [Training ∈ {University, Engineering school}] ∧
[YearsService ∈ [7,15]] ∧ [Age ∈ [34,40]]

This conjunction of properties is interpreted as follows : the employees
observed at the jth position have a University or Engineering school training,
they have been in the factory between 7 and 15 years and they are between
34 and 40 years old. Frequencies can also be added for each modality of a
nominal variable :

aj : [Training ∈ {University (0.98), Engineering school (0.02)}] ∧
[YearsService ∈ [7,15]] ∧ [Age ∈ [34,40]]

2.3 Generalization/specialization process

We present the way we generalize each group of data by a description which
enables to express the variation within the group. This process is performed
in an unsupervised way. Each group is considered independently from each



other. Indeed, we look for an homogeneous description of a group and not
a discriminant one. The first step consists in generalizing each group Gj by
an assertion aj . This generalization is performed for each variable, using
the following rules :

Y (aj) = (δ1
j , . . . , δ

i
j , . . . , δ

p
j )

where δi
j = ⊕({Yi(ω) | ω ∈ Gj}) i = 1, . . . , p

and ⊕ ({Yi(ω)}Gj ) =

{
[min({Yi(ω)}Gj ),max({Yi(ω)}Gj )] Yi numeric
{Yi(ω)}Gj Yi nominal

However, untypical individuals make the generalization too broad, adding
a lot of values rarely observed in the class. For example, let us define two
groups described by the following assertions a1 and a2 :

a1 : [Training ∈ {University, Engineering school}] ∧
[YearsService ∈ [7,10]] ∧ [Age ∈ [34,40]]

a2 : [Training ∈ {University, Engineering school}] ∧
[YearsService ∈ [8,15]] ∧ [Age ∈ [34,40]]

In the first group, employees are mostly younger than 36 years old and
98% have an Engineering school training. In the second group, employees
are mostly older than 38 years old and 98% have a University training. If
we compare a1 and a2, they are similar while initial groups aren’t the same
at all. In so far as untypical individuals are less informative regarding a ho-
mogeneous description of the class, we propose a specialization step, where
the final description is more characteristic.

To perform the specialization step, we adapt a volume criterion (see [2]),
which measures a generality index of an assertion aj :

vol(aj) =
p∏

i=1

Et(δi
j)

where Et(δi
j) =

{
card(δi

j) nominal case
max(δi

j)−min(δi
j) numeric case

However, this volume criterion can’t be applied with both nominal and
numeric variables because of scale problems. Indeed, this criterion measures



in a different way a generalization on a numeric variable (length of an in-
terval) and on a nominal one (set of values). These two different scales may
involve an unbalanced reduction giving preference to the loss of numeric
values. To overcome problems of scale between nominal and numeric vari-
ables, we code numeric variables into ordinal ones. This coding allows us to
have a homogeneous criterion among all variables without giving preference
to one particular kind. This coding is performed by a recursive partition-
ing. It aims at finding a set of intervals under uniform hypothesis. Indeed,
we search for a uniform distribution of observed data on each interval found.

After coding the numeric variables, we reduce the initial assertion into
a more homogeneous one. We fix a threshold α, which is the minimum
covering power of the assertion. The covering power of an assertion aj is
based on the extension of aj , which is the set of individuals verifying the
description δj :

extGj (aj) = {ω ∈ Gj | ∀i ∈ {1, . . . , p}, Yi(ω) ∈ δi
j}

The covering power of an assertion aj , noted Rec(aj) is defined as :

Rec(aj) =
card(extGj (aj))

card(Gj)

We define V = P(δ1
j ∪ . . . ∪ δp

j ). The covering set of an element V ∈ V
on Gj is defined as :

cov(V ) = ∪v∈V {ω ∈ Gj | Yi(ω) = v}

where Yi is the variable such that v ∈ δi
j . If Yi is a quantitative variable, we

rather tests if Yi(ω) ∈ v where v is an interval obtained by the discretization
step performed on δi

j .

The algorithm of specialization consists in computing all admissible val-
ues set removals V ∈ V. V is called an admissible removal if the new
assertion a∗j obtained after removing V from δj is such that :

Rec(a∗j ) ≥ α

We significantly reduce the complexity by computing bests admissible
removals, according to our volume criterion. This computation is performed



using simplification rules in an iterative search. At each step k, we build Lk

which is the set of all admissible removals such that :

∀V ∈ Lk, card(V ) = k and
card(cov(V ))

card(Gj)
≤ (1− α)

We associate V ∗ ∈ V to V . V ∗ is equal to :

V ∗ = ∪i=1,...,p {v ∈ δi
j \ ⊕({Yi(ω) | ω ∈ Gj \ cov(V )})}

For each V ∈ V, we can define the corresponding assertion aj,∗ which is
described by δj,∗ = (δ1

j,∗, . . . , δ
p
j,∗) such that :

δi
j,∗ = δj \ V ∗ i = 1, . . . , p

In our algorithm the complexity of computing V ∗ from V is bypassed
according to several propositions (see [12]).

We define the basic lines of our iterative search. The first step consists
in computing L1. L1 corresponds to all singletons such that :

L1 = {V ∈ V | card(V ) = 1 and
card(cov(V ))

card(Gj)
≤ (1− α)}

For each V ∈ L1, we associate an element V ∗ ∈ V which is initialized to
V .

Given this first step, we iterate by building L2 which corresponds to a
subset of the set of couples values V = {vk,vl}, where {vk}, {vl} ∈ L1. Let
us define V1 = {vk} and V2 = {vl}. We define the following rules to decrease
the complexity of the reduction algorithm (see [12]) :

• if cov(V ) = cov(V1) (resp. cov(V2)), we update V ∗
1 (resp. V ∗

2 ) :

V ∗
1 ← V ∗

1 ∪ {vl} (resp. V ∗
2 ← V ∗

2 ∪ {vk})

• else if cov(V ) ≤ 1−α, V is added to L2 and V ∗ is initialized to V ∗
1 ∪V ∗

2 .

We iterate considering the removal due to three and more combination
values by building L3, . . . , Lk, . . . , Lm where Lk corresponds to all admissible
removal of k values from aj . Lk is computed using the previous rules from
Lk−1. The search is stopped after m iterations when Lm = ∅. The end of



the specialization step consists in choosing the assertion aj,l corresponding
to Vl in {L1 ∪ . . . ∪ Lm−1} which provides the minimum volume :

aj ← arg min({vol(aj,∗) | V ∈ L1 ∪ . . . ∪ Lm−1})

We give a small example with simulated numeric data (Fig. 1).

Figure 1: Specialization of the initial description

The generalization step gives the following description for the group :

[Y1 ∈ [4.21, 16.66]] ∧ [Y2 ∈ [1.88, 8.02]]

First we perform a coding of the two numeric variables. After the spe-
cialization step, keeping a covering power of 90%, we describe the same
group as follows :

[Y1 ∈ [5.84, 13.96]] ∧ [Y2 ∈ [3.26, 6.528]]

Taking the employees careers example, this step of specialization pro-
vides two new assertions. Rarely seen employees’ profiles have been removed
from the final description :

a1 : [Training =Engineering school] ∧ [YearsService ∈ [7,8]] ∧ [Age ∈
[34,37]]



a2 : [Training =University] ∧ [YearsService ∈ [10,15]] ∧ [Age ∈ [36,40]]

At the end of our generalization/specialization step, an output assertion
aj ∈ A corresponds to the minimal volume of description whose power cov-
ering on Gj is α.

3 Clustering of symbolic data by a divisive ap-
proach

LetA = {a1, . . . , aJ}, the J assertions obtained by the generalization/specialization
process. Each assertion is described on p variables Y1, . . . , Yp by a vector :

δj = (δ1
j , . . . , δ

p
j ) ∈ D = D1 × . . . ×Dp

Let PK = (C1, . . . , CK) be a K-clusters partition of A :

Ck ∩ Ck′ = ∅ (1)⋃
k=1,...,K

Ck = A (2)

At each step of the divisive algorithm, a new (K+1)-clusters partition is
obtained by splitting a cluster Ck ∈ PK in two new clusters C1

k and C2
k .

The general algorithm is the following :

Initialization: P1 = A; set K=1;

If K ≤ J − 1 then:

(i) Choose Ck ∈ PK such that the split (C1
k , C2

k) of Ck maximizes

∆(Ck) = I(Ck)− I(C1
k)− I(C2

k) (3)

(ii) PK+1 = PK ∪ {C1
k , C2

k} − {Ck}
(iii) K ← K + 1

The algorithm stops after J − 1 iterations if the J assertions have different
descriptions in D. Usually, the users are interested in few clusters partitions
and the algorithm stops after L − 1 iterations, L < J . In this case, the
singletons of the hierarchy are the L clusters of the partition obtained in the



last iteration of the algorithm.

In order to define step (i), we will define :

• the quality criterion I of a cluster Ck. It will be defined as an extension
of the inertia criterion to the case of a dissimilarity matrix

• how to split a cluster Ck and how to find its best split (C1
k , C2

k)

3.1 Extension of the inertia criterion

Let D = {djj′} a dissimilarity matrix defined on A = {a1, . . . , aJ} :

djj′ = d(aj , aj′) = d(aj′ , aj) ≥ 0, djj = 0

Each assertion is weighted by a real value pj (j = 1, . . . , J), for instance
pj = 1

J .

Definition 1 The quality I of a cluster Ck is defined by :

I(Ck) =
∑

aj∈Ck

∑
aj′∈Ck

pjpj′

2µk
d2

jj′ (4)

µk =
∑

aj∈Ck

pj

In the particular case of quantitative data, δj ∈ Rp and the criterion
I(Ck) is the inertia of the cluster Ck.

In the general case of symbolic data, d is a distance or a dissimilarity
between symbolic descriptions (see [7], [9]).

3.2 Splitting a cluster

In our approach, we split a cluster C according to a binary question of the
form

{Is Yi ≤ c ?}
where c ∈ Oi is called the cut value.

Breiman, Friedman, Olshen and Stone (see [1]) defined the notion of
binary question in the case of classical data.

Here we propose an extension of this definition in the case of symbolic
data e.g. in the case of objects described by an interval of values or by set
of weighted values :

Yi : A → Di

where Di can be :



- the set of closed and bounded intervals of R

- the set of probability distributions on Oi

An assertion a ∈ C answers “yes” or “no” to the binary question ac-
cording a binary function Qc : A → {true, false}. The split (C1, C2) of C
is induced by the binary question {Is Yi ≤ c ?} as follows :

C1 = {a ∈ C / Qc(a) = true}
C2 = {a ∈ C / Qc(a) = false}

• If the assertions are described on the variable Yi by a real interval and

- Oi = R,

- Di is the set of closed and bounded intervals of R,

- Yi(a) = [ia, sa] ∈ Di and ma = ia+sa
2 is the middle of [ia, sa],

then the assignment rule is the following :

Qc(a) = 1 if ma ≤ c

Qc(a) = 0 if ma > c

See for instance Fig. ??.

Figure 2: a is assigned to C1 because ma = 171 ≤ 172

• If the assertions are described on the variable Yi by a discrete proba-
bility distribution and

- Oi is a finite and ordered set,

- Di is the set of probability distributions on Oi,

- Yi(a) = δa and δa is a function defined from Oi to [0, 1] such that :∑
x∈Oi

δa(x) = 1



then, the assignment rule is the following :

Qc(a) = 1 if
∑
x≤c

δa(x) ≥ 1/2

Qc(a) = 0 if
∑
x≤c

δa(x) < 1/2

3.3 Choice of the best split

Let C be a set of n assertions. The goal is to find the split C = (C1, C2) of
smallest “within inertia”:

W (C1, C2) = I(C1) + I(C2)

=
∑

aj∈C1

∑
aj′∈C1

pjpj′

2µ1
d2

jj′ +
∑

aj∈C2

∑
aj′∈C2

pjpj′

2µ2
d2

jj′ (5)

In the Edward and Cavalli-Sforza method (see [6]) one chooses the op-
timal split (C1, C2) of C among the 2n−1 − 1 possible splits. It is clear that
the amount of calculation needed when n is large will be prohibitive.

In our approach, to reduce the complexity, we choose the best split
among all the splits induced by the set of binary questions.

• If a variable Yi is described by real intervals, there will be at most
zi = n − 1 different splits (C1, C2) induced by this variable. Indeed, what-
ever the cut value c between two consecutive ma may be, the split induced is
the same. In order to ask only n−1 questions to generate all these splits, we
decide to use the n−1 cut values c, chosen as the middle of two consecutive
ma. Indeed, if the n values ma are different, there are n − 1 cut values on
Yi.

• If a variable Yi is described by a discrete probability distribution on
Oi (finite and ordered) and M = card(Oi), there is M − 1 different binary
questions and at most zi = M − 1 different splits (C1, C2) induced by this
variable.

Finally, if there are p variables, we choose among the z1 + . . . + zp

corresponding splits (C1, C2), the split of smallest “within inertia”.



3.4 The output

The output of the divisive algorithm is a hierarchy whose clusters C are
indexed by ∆(C) = I(C)− I(C1)− I(C2). The number L−1 of iterations is
chosen by the user and the singletons of the hierarchy are the L clusters of
the last partition. This hierarchy is also a decision tree. The L clusters are
the leaves and the nodes are the binary questions selected by the algorithm.
Each cluster is characterized by a production rule defined according to the
binary questions leading from the root to the corresponding leaves.

4 A simple example

The following example is an illustration of the two step process.
The Table 3 gives an example of a data matrix resulting from a sql query

on 1000 employees. The attribute C associates to each employee a number
between 1 and 50, corresponding to the position of the employee in the
factory.

C Training YearsService Age
ω1 2 University 15 40
...

...
...

...
ω1000 43 Engineering school 7 29

Table 3: Result of the sql query on 1000 employees

The Table 4 gives the 50 assertions (corresponding to the 50 previous
factory position), obtained by the generalization/specialization process.

Training YearsService Age
a1 University (1), Engineering school (0) [7,8] [34,37]
...

...
...

...
a50 University (0.3), Engineering school (0.7) [2,5] [25,28]

Table 4: Assertions obtained by the generalization/specialization process

The Fig. 3 gives the hierarchy obtained with the 50 previous assertions
after two splits.

The two binary questions constructing the hierarchy are :



Figure 3: The hierarchy and the three clusters obtained by the clustering
process

{ Is YearsServices ≤ 6 ?}
{ Is Age ≤ 31 ?}

Those binary questions are also two binary functions fromA in {true, false}
noted :

Q1(a)=[ YearsServices(a) ≤ 6 ]
Q2(a)=[ Age(a) ≤ 31 ]

Those functions are defined according to the assignment rules given sec-
tion 3.2.

According to those binary functions, production rules can be defined for
each cluster. For instance the production rule of cluster 1 is :

If [ YearsServices(a) ≤ 6 ]=true and [ Age(a) ≤ 31 ]=true
then a ∈ Cluster 1

Each cluster is also an assertion (representing a set of assertions) charac-
terized by a conjunction of properties. For instance, Cluster 1 is described
by :

[ YearsServices ≤ 6 ] ∧ [ Age ≤ 31 ]
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