Handling Missing Values with Regularized Iterative Multiple Correspondence Analysis

J. Josse¹, M. Chavent², B. Liquet³ & F. Husson¹

CARME conference, Rennes, 9 February 2011

¹ Agrocampus Rennes

² University of Bordeaux 2

³ ISPED Bordeaux

Type of missing values

- "Really missing" and "not really missing"
- MCAR, MAR, MNAR (Rubin, 1976)

 \Rightarrow In MCA, van der Heijden & Escofier (1987) discussed which method is well suited for which kind of missing data

Missing single

	V1	V2	V3
ind 1	а	NA	g
ind 2	NA	f	g
ind 3	а	е	h
ind 4	а	е	h
ind 5	b	f	h
ind 6	С	f	h
ind 7	С	f	NA

	V1_a	V1_b	V1_c	V1_NA	V2_e	V2_f	V2_NA	V3_g	V3_h	V3_NA
ind 1	1	0	0	0	0	0	1	1	0	0
ind 2	0	0	0	1	0	1	0	1	0	0
ind 3	1	0	0	0	1	0	0	0	1	0
ind 4	1	0	0	0	1	0	0	0	1	0
ind 5	0	1	0	0	0	1	0	0	1	0
ind 6	0	0	1	0	0	1	0	0	1	0
ind 7	0	0	1	0	0	1	0	0	0	1

Missing single: a new category is added for missing values
⇒ well-adapted for "not really missing" or MNAR

Missing passive modified margin

Missing passive (Benzécri, 1973; Meulman, 1982)

	V1	V2	V3
ind 1	а	NA	g
ind 2	NA	f	g
ind 3	а	е	h
ind 4	а	е	h
ind 5	b	f	h
ind 6	С	f	h
ind 7	С	f	NA

	V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h
ind 1	1	0	0	0	0	1	0
ind 2	0	0	0	0	1	1	0
ind 3	1	0	0	1	0	0	1
ind 4	1	0	0	1	0	0	1
ind 5	0	1	0	0	1	0	1
ind 6	0	0	1	0	1	0	1
ind 7	0	0	1	0	1	0	0

Missing values are skipped Row margins are not equal ⇒ many properties of MCA are lost

- Missing passive modified margin (Escofier, 1987)
 - \Rightarrow row margins are fixed to J
 - \Rightarrow Good properties: \mathbf{f}_s maximises $\sum_{j=1}^J \hat{\eta}_{\mathbf{f}_s|\mathbf{v}_j}^2$
 - ⇒ Equivalence with subset MCA (Greenacre & Pardo, 2006)

Handling missing values in exploratory multivariate analysis

The method consists to find the components \mathbf{F} and the axes \mathbf{U} that minimize the reconstruction error:

$$C = \|\mathbf{X} - \mathbf{F}\mathbf{U}'\|_{\mathbf{M}, \mathbf{D}}^2$$

With missing values, a matrix of weights **W** is introduced:

$$C = \|\mathbf{W} * (\mathbf{X} - \mathbf{F}\mathbf{U}')\|_{\mathbf{M},\mathbf{D}}^2$$

with $w_{ik} = 0$ if x_{ik} is missing and $w_{ii} = 1$ otherwise.

 \Rightarrow Use of iterative algorithms

Iterative algorithms

- Initialization: missing values in X are imputed with initial values (such as the mean of each variable)
- Estimation step: the analysis is performed on the completed data set
- Imputation step: missing values are imputed with the reconstruction formulae with S dimensions

$$X = W * X + (1 - W) * (\hat{F}\hat{U}')$$

- Steps E and M are repeated until convergence
- \Rightarrow EM type algorithms
- \Rightarrow The number of dimensions S has to be chosen a priori
- ⇒ Nora-Chouteau in CA (1974); Kiers in PCA (1997)

Iterative MCA

MCA can be seen as the SVD of (data, metric, row masses)

$$\left(IXD_{\Sigma}^{-1}, \frac{1}{IJ}D_{\Sigma}, \frac{1}{I}I_{I}\right)$$

with \boldsymbol{X} the indicator matrix and \boldsymbol{D}_{Σ} the diagonal matrix of the column margins of \boldsymbol{X} ,

Iterative MCA

- 1 initialization $\ell=0$: X^0 missing values are imputed with the proportion of the category (the sum must equal one) $\Rightarrow D_{\Sigma}^0$;
- 2 step ℓ :
 - a) MCA on $\mathbf{X}^{\ell-1}$: $\hat{\mathbf{F}}$ and $\hat{\mathbf{U}}$ are obtained from a PCA on

$$\left(IX^{\ell-1}(\mathsf{D}_{\Sigma}^{\ell-1})^{-1},\frac{1}{IJ}\mathsf{D}_{\Sigma}^{\ell-1},\frac{1}{I}\mathbb{I}_{I}\right)$$

b) Impute the indicator matrix using the reconstruction formulae:

$$\hat{x}_{ik}^{\ell} = \frac{1}{I} \left(1 + \sum_{s=1}^{S} \hat{f}_{is}^{\ell} \hat{u}_{ks}^{\ell} \right) \mathbf{D}_{\Sigma}^{\ell-1}$$

The new imputed dataset is $\mathbf{X}^\ell = \mathbf{W} * \mathbf{X} + (1 - \mathbf{W}) * \hat{\mathbf{X}}^\ell$

- c) $\mathbf{D}_{\Sigma}^{\ell}$ is updated with the new column margins I_{k}^{ℓ} of \mathbf{X}^{ℓ} ;
- 3 steps (2.a), (2.b) and (2.c) are repeated until convergence

Iterative MCA

- Step 0: missing fuzzy average = reconstruction of order 0
- The algorithm can return a completed indicator matrix

	V٦	V2	٧3
ind 1	а	NA	g
ind 2	NA	f	g
ind 3	а	е	h
ind 4	а	е	h
ind 5	b	f	h
ind 6	С	f	h
ind 7	С	f	NA

	V1_a	V1_b	V1_c	V2_e	V2_f	V3_g	V3_h
ind 1	1	0	0	0.71	0.29	1	0
ind 2	0.13	0.29	0.59	0	1	1	0
ind 3	1	0	0	1	0	0	1
ind 4	1	0	0	1	0	0	1
ind 5	0	1	0	0	1	0	1
ind 6	0	0	1	0	1	0	1
ind 7	0	0	1	0	1	0.37	0.63

• Imputed values can be seen as degree of membership

Overfitting

Overfitting

Overfitting

$$\max_{\substack{i,k \in \text{obs} \\ i,k \notin \text{obs}}} (x_{ik} - \hat{x}_{ik})^2 = 0.03 \text{ whereas } \max_{\substack{i,k \notin \text{obs} \\ i,k \notin \text{obs}}} (x_{ik} - \hat{x}_{ik})^2 = 0.34$$

Observed values are well-fitted but missing ones are badly predicted ... and consequently axes and components are badly predicted

 \Rightarrow Regularization methods

Regularized Iterative MCA

$$\sum_{s=1}^{S} \hat{f}_{is}^{\ell} \hat{u}_{ks}^{\ell} = \sum_{s=1}^{S} \frac{\hat{f}_{is}^{\ell}}{\|\hat{\mathbf{f}}_{s}^{\ell}\|_{\mathbf{D}}} (\sqrt{\lambda_{s}}) \hat{u}_{ks}^{\ell}$$

The eigenvalues can be shrunk in the reconstruction step:

$$\sum_{s=1}^{S} \frac{\hat{\mathbf{f}}_{is}^{\ell}}{\|\hat{\mathbf{f}}_{s}^{\ell}\|_{\mathbf{D}}} \left(\sqrt{\lambda_{s}} - \frac{\hat{\sigma}^{2}}{\sqrt{\lambda_{s}}}\right) \hat{u}_{ks}^{\ell}$$

with
$$\hat{\sigma}^2 = \frac{1}{K-J-S} \sum_{s=S+1}^{K-J} \lambda_s$$

⇒ remove the noise to avoid instability on the predictions

Simulations

Many scenarios are considered:

- percentage of missing values: small, medium
- missing values mechanism: MCAR, MAR
- pattern of missing values: random or not random
- relationship between variables: low or strong
- 1000 simulations

The simulated data:

- 100 individuals
- 10 variables from a normal distribution
- each variable is cut in 3 equal-count categories
 - ⇒ By construction, 4 underlying dimensions

Simulations

The criterion used is the RV coefficient between the configuration without missing values and the one obtained from the algorithm

Missing	Link	Missing Passive	Missing Fuzzy	Missing single	RiMCA
			•	Siligle	
		Modified	Average		
		Margin			
		R - NR	R - NR	R - NR	R - NR
10% MCAR	ow	0.94 - 0.91	0 94 - 0 92	0.87 - 0.47	0.94 - 0.93
10% MCAR	strong	0.97 - 0.94	0.97 - 0.95	0.96 - 0.68	0.98 - 0.97
30% MCAR	ow	0.77 - 0.44	0.77 - 0.77	0.67 - 0.32	0.76 - 0.78
30% MCAR	strong	0.88 - 0.71	0.88 - 0.91	0.86 - 0.46	0.91 - 0.90
8% MAR	ow	0.94 - 0.91	0.94 - 0.91	0.72 - 0.28	0.95 - 0.92
8% MAR	strong	0.96 - 0.91	0.96 - 0.90	0.96 - 0.54	0.98 - 0.96
16% MAR	ow	0.86 - 0.80	0.83 - 0.79	0.50 - 0.29	0.88 - 0.83
16% MAR	strong	0.89 - 0.80	0.84 - 0.78	0.88 - 0.55	0.95 - 0.90

• 1232 respondents, 14 questions, 35 categories, 9% of missing values concerning 42% of respondents

• 1232 respondents, 14 questions, 35 categories, 9% of missing values concerning 42% of respondents

Conclusion

Regularized iterative MCA

- gives "good" results
- is efficient when strong relationships between variables (you learn from the other variables) ...
- ... but needs tuning parameters
- can be used as an imputation method?
- can be used to perform a clustering on categorical variables with missing values
- is available in the missMDA package that imputes the indicator matrix and the FactoMineR package that performs the MCA from an indicator matrix