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Abstract : The proposed divisive clustering method performs simultaneously a hierarchy of a set of

objects and a monothetic characterization of each cluster of the hierarchy. A division is performed

according to the within-cluster inertia criterion which is minimized among the bipartitions induced by

a set of binary questions. In order to improve the clustering, the algorithm revises at each step the

division which has induced the cluster chosen for division.
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1. Introduction

The objective of cluster analysis is to group a set Ω of N objects into clusters having the
property that objects in the same cluster are similar to another and different from objects of
other clusters. In the pattern recognition literature (Duda and Hart, 1973) this type of problem
is referred to as unsupervised pattern recognition. The most common clustering methods are
partitioning, hierarchical agglomerative and hierarchical divisive ones.
A partition of Ω is a list (C1, . . . , CK) of clusters verifying C1 ∪ . . . ∪CK = Ω and Ck ∩Ck′ = ∅
for all k 6= k′. The essence of partitioning is the optimization an objective function measuring
the homogeneity within the clusters and/or the separation between the clusters. Algorithms
of the exchange type are frequently used to find a local optimum of the objective function,
because of the complexity of the exact algorithms. Well-known partitioning procedures are the
Forgy’s k-means and the isodata methods, described in Anderberg (1973), and the dynamical
clustering method (Diday, 1974).
Agglomerative and divisive hierarchical clustering methods are different, in the type of structure
they are searching, from partitioning. Indeed, a hierarchy of Ω is a family H of clusters satisfying
Ω ∈ H, {ω} ∈ H for all ω ∈ Ω and A ∩ B ∈ {∅, A, B} for all A,B ∈ H. A hierarchy can be
represented in the form of a tree or dendogram, that shows how the clusters are hierarchically
organized.
The general algorithm for agglomerative clustering starts with N clusters, each consisting of
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one element of Ω, and merges successively two clusters on the basis of a similarity measure.
Well-known agglomerative hierarchical methods are described in Everitt (1974).
Divisive hierarchical clustering reverses the process of agglomerative hierarchical clustering, by
starting with all objects in one cluster, and dividing successively each cluster into smaller ones.
Those methods are usually iterative and determine at each iteration the cluster to be divided
and the subdivision of this cluster. This process is continued until suitable stopping rule arrests
further division.
There is a variety of divisive clustering methods (Kaufman and Rousseeuw, 1990). A natural
approach of dividing a cluster C of n objects into two non-empty subsets would be to consider all
the possible bipartitions. In this, Edward and Cavalli-Sforza (1965) choose among the 2n−1 − 1
possible bipartitions of C, the one having the smallest within-cluster sum of squares. It is clear
that such complete enumeration procedure provides a global optimum but is computationally
prohibitive.
Neverless, it is possible to construct divisive clustering methods that does not consider all bipar-
titions. MacNaughton-Smith (1964) proposed an iterative divisive procedure using an average
dissimilarity between an object and a group of objects. Chidananda Gowda and Krishna (1978)
proposed a disaggregative clustering method based on the concept of mutual nearest neighbor-
hood. Other methods taking as input a dissimilarity matrix are based on the optimization of
criterions like the split or the diameter of the bipartition (Guénoche, Hansen and Jaumard, 1991;
Wang, Yan and Sriskandarajah, 1996). Probabilistic validation approach for divisive clustering
has also been proposed (Har-even and Brailovsky, 1995).
Another family of divisive clustering methods is monothetic. A cluster is called monothetic if a
conjunction of logical properties is both necessary and sufficient for membership in the cluster
(Sneath and Sokal, 1973). Indeed, each division is carried out using a single variable and by
separating objects possessing some specified values of this variable from those lacking them.
Monothetic divisive clustering methods have first been proposed in the particular case of binary
data (Williams and Lambert, 1959; Lance and Williams, 1968). Since then, monothetic cluster-
ing methods have mostly been developed in the field of unsupervised learning and are known
as descendant conceptual clustering methods (Michalski, Diday and Stepp, 1981; Michalski and
Stepp, 1983).
In the field of discriminant analysis, monothetic divisive methods have also been widely devel-
oped. However, those methods are different from clustering in which the clusters are inferred
from data. Indeed, a partition of Ω is pre-defined and the problem concerns the construction of
a systematic way of predicting the class membership of a new object. In the pattern recognition
literature, this type of classification is referred to as supervised pattern recognition. Divisive
methods of this type are usually known as tree structured classifier like cart (Breiman, Fried-
man, Olshen and Stone, 1984) or id3 (Quinlan, 1986). Recently, Ciampi (1994) insisted on the
idea that trees offer a natural approach for both class formation (clustering) and development
of classification rules (discrimination).
The clustering method proposed in this paper was developed in the framework of symbolic data
analysis (Diday, 1995), which aims at bringing together data analysis and machine learning.
More precisely, we propose a monothetic hierarchical clustering method performed in the spirit
of cart from an unsupervised point of view. We have restricted the presentation of this method
to the particular case of quantitative data. At each stage, the division of a cluster is performed
according to the within-cluster inertia criterion (section ??). This criterion is minimized among
bipartitions induced by a set of binary questions (section ??). Moreover, clusters are not sys-
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tematically divided but one of them is chosen according to a specific criterion (section ??). The
divisions are stopped after a number of iterations given as input by the user, usually interested
in few clusters partitions. The output of this divisive clustering method is an indexed hierarchy.
It is also a decision tree (section ??). The Ruspini’s data are given as a first illustration of this
method (section ??). We propose a modification of the algorithm in order to soften the property
shared by both agglomerative and divisive hierarchical methods, that efficient early partition
cannot be corrected at a later stage. It consists in revising, after the division of a cluster, the
previous division which has induced the cluster itself (section ??). Before the conclusion (section
??), the method is performed on Fisher’s iris dataset (section ??).

2. The inertia criterion

Let N be the number of objects in Ω. Each object is described on p real variables Y1, . . . , Yp by
a vector xi ∈ Rp and weighted by a real value pi (i = 1, . . . , N). Indeed, the analyst will prefer
sometimes to weight the objects differently. For instance, countries could be weighted according
to the size of their population. But usually, the weights are equal to 1 or equal to 1

n .
The inertia I of a cluster Ck is an homogeneity measure equal to :

I(Ck) =
∑

xi∈Ck

pid
2
M (xi,xk) (1)

where dM is the Euclidean distance (M is a symmetric matrix positively defined) :

∀x,y ∈ Rp, d2
M (x,y) = (x− y)tM(x− y) (2)

and xk is the center of gravity of the cluster Ck :

xk =
1
µk

∑
xi∈Ck

pixi (3)

µk =
∑

xi∈Ck

pi (4)

The within-cluster inertia W of a K-clusters-partition PK = (C1, . . . , CK) is equal to :

W (PK) =
K∑

k=1

I(Ck) (5)

According to the Huygens Theorem, minimizing the within-cluster inertia of a partition (e.g.
the homogeneity within the clusters) is equivalent to maximizing the between-cluster inertia
(e.g. the separation between the clusters). This equals to :

B(WK) =
K∑

k=1

µkd2
M (xk,x) (6)

3. Bipartitioning a cluster

Let C be a set of n objects. We want to find a bipartition (C1, C2) of C such that the within-
cluster inertia is minimum. In the Edward and Cavalli-Sforza method (1965) one chooses the
optimal bipartition (C1, C2) among the 2n−1−1 possible bipartitions. It is clear that the amount
of calculation needed when n is large will be prohibitive.
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In our approach, to reduce the complexity, we divide C according to a binary question (Breiman,
Friedman, Olshen and Stone, 1984) of the form “Yi ≤ c ?” where Yi : Ω → R is a real variable
and c ∈ R is called the cut point.
The bipartition (C1, C2) induced by the binary question is defined as follows. Let ω be an object
in C. If Yi(ω) ≤ c then ω ∈ C1 else ω ∈ C2. Those objects in C answering “yes” go to the left
descendant cluster and those answering “no” to the right descendant cluster (Fig. ??).

Figure 1: “Is height ≤ 172 ?”

For each variable Yi, there will be at most n − 1 different bipartitions (C1, C2) induced by the
above procedure. Indeed, whatever the cut point c between two consecutive observations Yi(ω)
may be, the bipartition induced is the same. In order to ask only n − 1 questions to generate
all these bipartitions, we decide to use the n − 1 cut points c, chosen as the middle of two
consecutive observations Yi(ω) ∈ R. Indeed, if the n observations Yi(ω) are different, there are
n − 1 cut points on Yi. If there are p variables, we choose among the p(n − 1) corresponding
bipartitions (C1, C2), the bipartition having the smallest within-cluster inertia.

4. Choice of the cluster

Let PK = (C1, . . . , CK) be a K-clusters-partition of Ω. At each stage, a new (K+1)-clusters-
partition is obtained by dividing a cluster Ck ∈ PK into two new clusters C1

k and C2
k . The

purpose is to choose the cluster Ck ∈ PK so that the new partition,

PK+1 = PK ∪ {C1
k , C2

k} − {Ck}

has minimum within-cluster inertia.
We know that :

W (PK+1) = W (PK)− I(Ck) + I(C1
k) + I(C2

k)

In this, minimizing W (PK+1) is equivalent to choosing the cluster Ck ∈ PK so that the difference
between the inertia of Ck and the within-cluster inertia of its bipartition (C1

k , C2
k) is maximum.

The criterion used to determine the cluster that will be divided is then equal to :

∆(Ck) = I(Ck)− I(C1
k)− I(C2

k) (7)

Of course, it means that the bipartitions of all the clusters of the partition PK have been defined
previously. At each stage, the bipartitions of the two new clusters C1

k and C2
k are defined and

used in the next stage.

5. The stopping rule and the output

The divisions are stopped after a number L of iterations and L is given as input by the user,
usually interested in few clusters partitions. Indeed, the last partition obtained in the last
iteration is a L + 1-clusters-partition. The issue of stopping the divisions before obtaining the
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total hierarchy (L = N) is to ensure that the partitions of smallest within-cluster inertia of the
total hierarchy are still in the hierarchy obtained after L iterations. This property is verified
because the clusters are not systematically divided but one cluster is chosen according to the
criterion ∆ given in (??) which ensures that the partition induced by this division has minimum
within-cluster inertia. However, this stopping rule doesn’t solve the issue of determining the
number of clusters in the dataset (Milligan and Cooper, 1985).
The output of this divisive clustering method is a hierarchy H which singletons are the L + 1
clusters of the partition obtained in the last iteration of the algorithm. Each cluster Ck ∈ H is
indexed by ∆(Ck). Because ∆ is a non-decreasing mapping,

Ck ⊂ Ck′ ⇒ ∆(Ck) ≤ ∆(Ck′) (8)

there will be no inversions in the dendogram of the hierarchy.
This hierarchy is also a decision tree. The L clusters are the leaves and the nodes are the binary
questions selected by the algorithm. Each cluster is characterized by a rule defined according
to the binary questions leading from the root to the corresponding leaves.

6. A simple example

The dataset is 75 points of R2 ( Ruspini, 1970). We find successively a partition in 2,3 and 4
clusters (L = 3).
At the first stage, the method induces 2(75 − 1) = 148 bipartitions. We choose among the
148 bipartitions (C1, C2), the one of smallest within-cluster inertia. It has been induced by the
binary question “Is Y1 ≤ 75.5 ?”. Notice that the number of subdivisions has been reduced from
275 − 1 = 3, 77× 1022 to 148.
At the second stage, we have to choose whether we divide C1 or C2. Here, we choose the cluster
C1 and its bipartition (C1

1 , C2
1 ) because ∆(C1) > ∆(C2). The binary question is “Is Y2 ≤ 54 ?”.

At the third stage, we choose the cluster C2 and its bipartition (C1
2 , C2

2 ). The binary question
is “Is Y2 ≤ 75.5 ?”.
Finally, the divisive algorithm gives the 4 clusters represented Fig. ??.

Figure 2: The 4-clusters partition

According to the dendogram of the hierarchy given figure ??, the four clusters are characterized
by four rules. For instance cluster C1

1 is characterized by the following rule:

If [Y1(ω) ≤ 75, 5] and [Y2(ω) ≤ 54] then ω ∈ C1
1 .
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Figure 3: The dendogram of the indexed hierarchy

This dendogram can be read as a decision tree and the rules can be read as classification rules
of new objects to one of the four clusters.

7. Revising a binary question

The purpose is to enable the analyst to revise at each division of a cluster the binary question
which has induced the cluster itself.
Let C be a cluster which has been divided in two clusters C and C according to the binary
question “Is Y1 ≤ c1 ?”. Then C is chosen to be divided in two clusters C1 and C2 according to
the binary question “Is Y2 ≤ c2 ?”.

Figure 4: Revising a binary question

At this stage, the binary question “Is Y1 ≤ c1 ?” is revised by modifying the cut point c1. We
choose a new cut point c′ among all possible cut points on Y1, such that the 3-clusters-partition
(C ′

1, C
′
2, C

′) induced by “Is Y1 ≤ c′ ?” and “Is Y2 ≤ c2 ?” has minimum within-cluster inertia
(figure ??).
For instance, figure ?? gives the 3-clusters-partition of 320 points of R2 simulated from four
2-dimensional Gaussian distributions. The points have been divided first according to the binary
question “Is Y2 ≤ 10, 9 ?” and then according to the binary question “Is Y1 ≤ 8 ?”.
The first cut point 10.9 is then modified in order to find, with the second binary question
“Is Y1 ≤ 8 ?”, the 3-clusters-partition of minimum within-cluster inertia. The new cut point is
12.1 (figure ??).

8. The Fisher’s iris dataset

The above clustering method has been examined with the well-known Fisher’s iris dataset. The
length and breadth of both petals and sepals were measured on 150 flowers. There are three
varieties of iris: Setoa, Versicolor and Virginia. There are 50 iris of each variety.
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Figure 5: The two 3-clusters-partitions

Of course, the knowledge of this pre-defined 3-clusters-partition is not used in our unsupervised
clustering procedure which is performed only with four quantitative variables : the petal width
(PeWi), the petal length (PeLe), the sepal width (SeWi) and the sepal length (SeLe).
First, we have used the Euclidean distance dM , with M = I, the identity matrix. Figure ??
gives the dendogram of the hierarchy and the 3-clusters-partition (C1, C2, C3) obtained after two
divisions of the dataset. The first cluster is composed of 53 iris including 50 Setoa, 3 Versicolor
and no Virginia . Wholly, the 3-clusters-partition contains 19 iris misclassified.
The first binary question “Is PeLe ≤ 3.4” is then revised in order to improve the within-cluster
inertia of the 3-clusters-partition. Figure ?? gives the dendogram of the hierarchy obtained with
the revised binary question “Is PeLe ≤ 2.45”. We can notice that the mis-classifications have
been reduced to 16. Indeed, the 50 Versicolor are all in C2.

Figure 6: Before the revision Figure 7: After the revision

Dynamical clustering and Ward agglomerative hierarchical clustering methods have also been
performed on the same dataset. The same distance was used. The partitions obtained with
the two clustering methods contained the same number of mis-classifications since 16 iris were
misclassified.
Secondly, we have used the normalized Euclidean distance dM , with M = D1/U2

i
where Ui is

the length between the maximum and the minimum value for the variable Yi. The figure ??
gives the dendogram of the hierarchy obtained with this distance and we notice a reduction of
the number of mis-classifications from 16 to 10 iris. It confirms the influence of the choice of
the distance in the result of a clustering. Then, before the second division, we have normalized
the Euclidean distance, according to the four length Ui computed locally in the cluster which
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Figure 8: Global normalization Figure 9: Local normalization

was divided. The figure ?? gives the dendogram of the hierarchy obtained with the locally
normalized Euclidean distance. We can notice that the number of mis-classifications is now
reduced to 6. It corresponds to an error rate of 0.04.
In their comparative study of the performance of different classifiers with Fisher’s iris dataset,
Weiss & Kulikowski (1991) give for the cart decision tree an error rate equal to 0.04. In this, we
obtain with the Fisher’s iris dataset comparable results with both unsupervised and supervised
approaches. However, the goal of the proposed clustering method and the cart algorithm are
different since we aim at inferring clusters from the data and cart algorithm aims at discovering
classification rules.

9. Conclusion

The proposed clustering method has the advantages to be simple and to give simultaneously a
hierarchy and a simple interpretation of its cluster. Moreover, it deals easily with very large
datasets. Indeed, is possible to construct the hierarchy on a sample of the dataset, and to use
the classification rules to assign the rest of the objects. This method has also given good results
on the Fisher’s iris dataset and on other real applications where it has been compared with the
dynamical clustering method and the Ward agglomerative hierarchical method (Chavent, 1997).
However, dividing a cluster according to a single variable can also be a deficiency in some situa-
tions. As for cart algorithm, in situations where the cluster structure depends on combinations
of variables, the divisive method will do poorly at discovering the structure.
A perspective would be on the one hand to use a local stopping rule (Milligan and Cooper, 1985;
Har-even and Brailovsky, 1995 ) for deciding if a cluster should be divided into two subclusters
and on the other hand to divide a cluster according to a metric locally defined in the cluster
itself.
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