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statistical model choice including 
variable selection based on variable 
importance: A relevant way for 
biomarkers selection to predict 
meat tenderness
M. p. ellies-oury1, M. Chavent2,3, A. Conanec1, M. Bonnet1, B. picard1 & J. saracco2,4

In this paper, we describe a new computational methodology to select the best regression model to 
predict a numerical variable of interest Y and to select simultaneously the most interesting numerical 
explanatory variables strongly linked to Y. three regression models (parametric, semi-parametric and 
non-parametric) are considered and estimated by multiple linear regression, sliced inverse regression 
and random forests. Both the variables selection and the model choice are computational. A measure 
of importance based on random perturbations is calculated for each covariate. the variables above a 
threshold are selected. then a learning/test samples approach is used to estimate the Mean square 
error and to determine which model (including variable selection) is the most accurate. the R package 
modvarsel (MoDel and VARiable seLection) implements this computational approach and applies to 
any regression datasets. After checking the good behavior of the methodology on simulated data, the 
R package is used to select the proteins predictive of meat tenderness among a pool of 21 candidate 
proteins assayed in semitendinosus muscle from 71 young bulls. The biomarkers were selected by linear 
regression (the best regression model) to predict meat tenderness. These biomarkers, we confirm the 
predominant role of heat shock proteins and metabolic ones.

In statistical modeling, it is crucial to select the best model to accurately predict a variable of interest Y with 
a p-dimensional vector of covariates X = (X1, …, Xj, …, Xp). Moreover, whatever the type of model (paramet-
ric, semi-parametric or non parametric), it is also necessary to select the most interesting explanatory variables 
strongly linked to Y. Usually the procedure of variables selection is specific to the statistical method used to 
estimate the chosen model. Stepwise regression or lasso regression for instance select covariate in a parametric 
linear regression model. In this paper, we propose a new computational methodology that simultaneously selects 
the best regression model and the most interesting covariates. A major advantage is that this methodology is 
universal/generic in the sense that it can be applied whatever the type of regression model/method. Moreover, a 
second advantage is that the proposed approach does not rely on strong probabilistic hypotheses (such as distri-
bution of the error term). Usually, each regression model/method has their own variable selection and evaluation 
procedures which can be technically/theoretically difficult to handle. In addition, they do not allow to compare 
performances of various regression models/methods in competition and then to retain the most relevant one. The 
procedure of variable selection performs a measure of importance for each covariate Xj by estimating the response 
variable with random perturbations of Xj. The variables above a cutoff value (defined for instance via a change 
point criterion) are selected. Then different regression models (including variable selection) are compared using 
a learning/test samples approach to estimate the Mean Square Error (MSE). In practice, this methodology is likely 
to be applied to any regression datasets with the R package modvarsel (MODel and VARiable SELection) which 
implements this computational approach. After checking the good behavior of the methodology on simulated 
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data, the R package is used to select the proteins predictive of tenderness among a pool of 21 potential proteins 
assayed in semitendinosus muscle from 71 young bulls.

Three Different Regression Models
In this paper, three regression models (parametric, semiparametric and nonparametric) are considered and esti-
mated respectively by multiple linear regression (MLR), sliced inverse regression (SIR) and random forests (RF).

In parametric regression, the underlying link function between Y (the response variable) and X (the 
p-dimensional covariate) relies on a finite number of parameters to be estimated. The most popular parametric 
regression model is the linear regression model β β ε= + ∑ +=Y Xj

p
j j0 1  where βj ∈ R, j = 0, …, p are the param-

eters to be estimated and ε is an random error term. Several estimation methods exist like for instance multivari-
ate linear regression1, principal component regression2, ridge regression3… Whatever the method chosen to 
estimate the parameters βj, the estimated link function β β= + ∑ =



ˆ ˆf X X( ) j
p

j j0 1  gives a prediction =ˆ ˆY f X( ) of 
the variable of interest for a given value of the covariate X. MLR1 uses ordinary least squares for estimating the 
unknown parameters βj, j = 1, …, p. The principle of least squares is as follows: minimizing the sum of the squares 
of the differences between the observed response variable yi in the given dataset and its prediction ŷi. Note that no 
assumption on the distribution (such as normality) of ε is needed to have an unbiased estimator of the βj param-
eters. The normality assumption is only necessary to make inference. The random error term ε is independent of 
X with a null expectation.

In nonparametric regression, the class of the link functions is expanded to have a more important flexibility. 
The analytic expression of the link function is not specified and the model writes Y = f(X) + ε. The link function 
is estimated for instance with a Random Forests4,5 (RF) and a prediction =ˆ ˆY f X( ) is made without knowing the 
exact shape of f. RF is one of the most used supervised learning algorithm that can be easily used for both classi-
fication and regression problems. The RF model can be viewed as an additive model of the following form: Y = f0
(X) + f1(X) + f2(X) + … + ε. Predictions are obtained through an ensemble classifier combining among many 
decision trees. No assumption is made about the random error term ε except that it is assumed to be independent 
of X. Contrary to linear models, non-linear interaction between X and Y can be taken into account. Note that only 
when the dimension p is one or two, a graphical representation of Ŷ  against X gives an idea of the shape of the link 
function. It is then difficult to interpret the shape of the link function contrary to parametric regression model 
where the shape is chosen a priori. For instance in multiple linear regression, a story can be told like if Xj goes up 
by 1 unit then Y will go up by βj units, etc. However, the assumption made regarding shape of the data with a 
parametric approach can potentially lead to estimate a model which does not reflect the true shape of the data. To 
resume, the problem of regression is to estimate the link function as accurately as possible while keeping this 
estimation as tractable and understandable as possible. In the parametric framexork, the link function belongs to 
a parametric family of functions and the goal is to estimate the underlying fiit dimension parameter describing 
the family. Contrariwise, in the nonparametric framework, very few assumptions are made about the shape of the 
link function. So, nonparametric models are potentially more applicable than the parametric ones. Nevertheless, 
this gain of flexibility has a defect. Nonparametric regression suffers from the curse of dimensionality. Its effi-
ciency deteriorates sharply when the dimension p of the covariate X increases.

To circumvent this drawback, it is possible to combine dimension reduction and nonparametricregression via 
semiparametric regression model. Here we focus on semiparametric single index model where the response var-
iable Y only depends on a linear combination β∑ = Xj

p
j j1  of the covariates (called the index) through an unknown 

link function f. This model writes then β ε= ∑ +=( )Y f Xj
p

j j1  and a two-step regression can be used to estimate 
the parameters βj and the link function f (a functional parameter). Note that ε is independent of X and its distri-
bution is arbitrary and unknown. The first step concernes the estimation of the index β∑ = Xj

p
j j1  using for 

instance SIR6,7 and the second step consists in estimating the link function f using for example a kernel method8 
or spline smoothing9,10 on the estimated index. A prediction β= ∑ =


ˆ ˆ ( )Y f Xj

p
j j1  is then made for a given value of 

the covariate X. This regression model is called semiparametric, with a parametric (resp. non parametric) part via 
the index (the link function). The two main advantages of this semiparametric model are:

•	 to keep a practical interpretation easier via the index and make charts like scatterplot of Y versus the esti-
mated index, and to measure the impact of each covariate Xj on Y based on the estimated index;

•	 to overcome the curve of dimensionality in the kernel estimation of f: thanks to the index, the dimension of 
the explanatory part is decreased from p to 1, and so the objective is well achieved.

searching for tenderness Biomarkers
Producing high value cuts with an homogeneous quality is an ongoing challenge for the red meat industry. 
Moreover, it is well known that consumers have gradually less time to cook. Thus, there is a growing demand for 
products that are quick and easy to prepare. However, these properties are generally not well developed in fresh 
meat. Among meat descriptors, tenderness is one of the most important attribute, and its wide inconsistency is a 
major problem for beef industry11,12.

Tenderness can be evaluated either by objective methods by soliciting trained panels, or by subjective meth-
ods, with a panel constituted of consumers11,13.

Shear force is a routine instrumental measure that might be considered as a proxy for sensory tenderness. In 
comparison to sensory evaluation, this method is relatively inexpensive, rapid and reproducible and it is also an 
alternative to sensory panels. Moreover, Shackelford et al.14 already established associations between these two 
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methods14–16. Nevertheless, Holman et al.17 demonstrated that the standard at which shear force protocols are 
described often omit key information, leading to non-reproducible results and thus to misinterpretations.

Nevertheless, these methods are greedy in time and in money but also difficult to organize. Thus, there is a 
need to find a way to guarantee consistent eating quality to consumer and to characterize meat quality as early 
as possible. Thus, the identification of meat quality biomarkers are of great interest, especially if there are quan-
tifiable on alive animal or early post-mortem on the carcass. Indeed, they will allow to orientate meat production 
toward the most adapted processes in meat distribution circuits18.

Recognizing the fundamental importance of muscle proteins to meat quality attributes, there has been a grow-
ing interest on how muscle proteins and the genes regulating their expression relate to meat quality. Biomarkers 
were developed since the previous methods of tenderness evaluation namely sensory panels as well as shear 
force methods are destructive. Indeed, these methods require removing a piece of steak from the carcass to 
perform the measurement hence leading to carcass depreciation, time consuming and ill-suited to day-to-day 
decision-making for carcass orientation. Thus, some researches were focused on tenderness determinism with 
the aim of better explaining and better predicting this parameter, thanks to the quantification of biomarkers 
(genes, proteins, metabolites). The quantification of the abundance of molecules such as proteins is of interest. 
Indeed, it allows to understand the interaction between genetic and environmental factors that contribute to the 
development of meat quality19–25. Potential markers of meat tenderness have been screened according to the met-
abolic or biological process they are involved in23,24,26,27. Such screening has allowed the identification of different 
groups of functions among protein biomarkers. The three most important groups of functions are glycolytic 
and oxidative energy supplying pathways and Heat Shock Proteins (HSPs)24. Several studies have reported the 
differential expression of chaperone proteins, specifically small heat shock proteins (sHSP), in muscle with vari-
able tenderness18,28. Moreover, Gagaoua et al.29 indicated that proteins with cell protective functions, particularly 
anti-oxidative proteins and HSPs seems to play key roles in tenderness determinism.

Thus, the challenge now is to select in a list of molecular biomarkers the ones that could be used to predict 
meat quality, a cognitive and applied objective strongly expected both by meat scientists and by the meat industry. 
The objective is to provide scientists tools to identify from their own list of biomarkers, a subset of few molecules 
to quantify as a proxy of a targeted phenotype, in this study meat tenderness.

Method
Description of the proposed statistical methodology. The aim of the proposed methodology is to 
choose among several regression methods the best one to predict a response variable Y with a selection of p′ ≤ p 
covariates strongly linked to Y. Whatever the regression method, the model is estimated with a sample S = {(xi, yi), 
i = 1, …, n} of nobservations of the covariate X and the response variable Y and the predicted values are =ˆ ˆy f x( )i i  
where f̂  is the estimated link function.

Let us first describe a general procedure to select interesting covariates in the regression model which can 
be used with any regression method. This procedure performs a measure of importance for each covariate Xj by 
estimating the response variable with some perturbations of the covariate and computing the error due to these 
perturbations. The variable importance (VI) of the covariate Xj is then

∑= −
=

ˆVI
n

y y1 ( )j
i

n

i i
j

1

( ) 2

where =ˆ ˆy f x( )i
j j

i
( ) ( )

 is the predicted value when the observations of the jth covariate are randomly permuted in 
the sample S and f̂

j( )
 is the new estimated link function. If the covariate Xj has an effect on Y, the random permu-

tation of its observations will affect the prediction of Y and increase the error measured in VIj. The covariates with 
the highest VI are then the most important to predict the response variable. In order to have robust estimation of 
the importance of the covariates, the procedure is replicated N times for each covariate Xj leading to N slightly 
different values of VIj: mean values and parallel boxplots can then be plotted to compare visually the importance 
of each covariate Xj. It is also possible to select the covariate with a mean VI above a threshold. This threshold can 
be the original Mean Square Error (MSE) taken as baseline:

∑= − .
=

ˆMSE
n

y y1 ( )
i

n

i i
1

2

Another way to identify automatically the useful covariates is to detect a single change point position30 (in 
mean and variance) in the ordered sequence of the p means VI’s values.

Let us now describe the procedure proposed to choose the best regression method (including variable selec-
tion) to predict the variable of interest. This procedure is based on a train/test samples approach frequently used 
in machine learning to estimate the error of classification and used here to estimate the Mean Square Error. The 
idea is to randomly split the sample S in a train sample Strain (with for instance 80% of the observations) and a test 
sample Stest (with the 20% remaining observations). For each regression method, a subset of covariates is selected 
using the Strain sample. Then each model (build with the selected covariates) is estimated (trained) using the 
observations in Strain. Finally the ntest observations in Stest are used to predict with this trained model the response 
variable Y and to calculate the so-called test Mean Square Error:

∑= − .
∈

ˆMSE
n

y y1 ( )test
test i S

i i
2

test
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The smaller the MSEtest is, the better is the estimated regression model to predict the response variable with 
new observations of the selected covariates. Estimating the error of prediction with observations that have not 
been used to estimate the model is a good way to avoid overfitting and to fairly compare different regression 
methods with different number of covariates.

Here again, in order to have a more robust estimation of the MSEtest (less dependent on the split in two sub-
samples), this procedure is replicated M times giving M values of MSEtest for each regression method (including 
covariates selection). Parallel boxplots of MSEtest (one boxplot per regression method) are used to visually select 
the most relevant method.

Because the covariates selected with a regression method can be slightly different at each replication, the 
occurrence of each covariate Xj in the final model is also informative to determine the most relevant ones. The 
plot for each regression method of the proportion of selection of each covariate (in the M final regression models) 
gives another idea of the importance of each covariate.

This methodology is briefly described in Figs 1 and 2.

some details about the developed R package. The R package modvarsel implements this computa-
tional methodology in two main functions:

Figure 1. How to choose a model?

Figure 2. How to select variable(s)?

https://doi.org/10.1038/s41598-019-46202-y
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•	 the function choicemod implements the train/test samples approach to determine which regression method 
(including or not covariates selection) is the most accurate for a given regression dataset. The following 
regression methods are available: MLR, SIR associated with kernel regression, RF, principal components 
regression, partial least squares regression and ridge regression.

•	 the function varimportance implements the covariate permutation technique to measure the importance of 
each covariate (VI) for any of the previous regression method.

In this paper only three regression methods are considered (MLR for linear parametric modeling, SIR for 
semiparametric modeling and RF for nonparametric modeling) but all the methodology is reproducible with any 
other regression method.

simulated dataset. This methodology has been first applied to simulate data generated from a fictitious 
model whose set of parameters have been set by the user. The general objective of a simulation study is to validate 
its numerical behavior.

Two regression models are considered: a parametric regression model (M1) and a semiparametric regression 
model (M2). Note that (M1) is linear and (M2) is non linear.

Let X be a p-dimensional variable (with p = 15) such that each covariate Xj follows a uniform distribution on 
[0; 0.7]. The Xj’s are independent of each other. Let ε be a standard normal error, independent of X.

Let β = (4, 4, −3, −3, −2, 0, …, 0)′ be the vector of the parameters associated with each covariate Xj.
Consequently, only the first five covariates are linked with the response variable Y as

ε− = ′ +Y X bM1: ,

ε− = ′ +Y X bM2: ( )3

Naturally, MLR should be efficient for M1 and should suffer for M2 and SIR should be well adapted for both 
M1 and M2 even if the linear link function of M1 is nonparametrically estimated by kernel regression. RF is 
purely nonparametric and does not need to estimate the parameter β. However, this lack of dimension reduction 
can be problematic in large dimensional spaces when such a dimension reduction space exists (as in M1 and M2).

Two samples of size n = 200 are generated from models M1 and M2 and are used to first describe the covariate 
selection step and second illustrate the regression model choice.

experimental dataset. The methodology to compare regression methods including variables selec-
tion is also illustrated on experimental data obtained on animals coming from the EU FP6 Integrated Project 
ProSafeBeef (FOODCT-2006-36241). More precisely, this study was conducted using 71 young entire males of 
three pure breed: Aberdeen Angus (n = 21), Limousin (n = 25) and Blond d’Aquitaine (n = 25). The 12 month-old 
young bulls were assigned to a 100 days finishing period before slaughter and fed individually with straw (25%) 
and concentrates (75%). There were slaughtered at the same age (around 17 months) and final live weight 
(around 665 kg) in order to avoid weight and age effects on muscle characteristics and beef meat quality. All bulls 
were transported from the experimental farm to the experimental abattoir (slaughterhouse of INRA institute; 
Saint-Genès-Champanelle, France). Bulls were stunned by captive bolt prior to exsanguination, with the current 
ethical guidelines for animal welfare.

Samples from Semitendinosus muscle were excised from the carcass of each animal within 15 minutes after 
slaughter, frozen in liquid nitrogen and stored at −80 °C until protein extraction for protein markers quantifica-
tion. The 21 biomarkers corresponded to seven biological functions25: energy metabolism: Malate dehydrogenase 
MDH1, β-enolase 3 ENO3, Lactate dehydrogenase chain B LDHB; heat shock proteins: αβ-crystallin CRYAB, 
HSP20, HSP27, HSP40, HSP70-1A/B, HSP70/Grp75 and HSP70-8; oxidative resistance: superoxide dismutase 
DJ-1, Peroxiredoxin Prdx6, Superoxide dismutase SOD1; muscle fibre structure: α-actinin 2, MLC-1F, Myosin 
heavy chain-I, -II and -IIx, F-actin-capping protein subunit β CAPZB, myosin binding protein H MyBP-H; Cell 
death, protein binding and proteolysis: µ-calpain. Western blot techniques31 were used to specificity primary 
antibodies against these 21 proteins in bovine muscle. Total protein extractions were performed in a denaturation 
extraction buffer32. Bradford protein assay was used to determine protein concentration. Protein extractions were 
stored at -20 °C. The Dot-blot technique described by Guillemin et al.31 was used to evaluate the relative abun-
dances of proteins.

Samples for mechanical measurement were cut into steaks 24 hours after slaughter and placed in sealed plastic 
bags under vacuum and kept between 2–4 °C for 14 days for ageing, then frozen and stored at -20 °C until analysis. 
After thawing, toughness of cooked meat was further evaluated instrumentally by Warner-Bratzler shear force 
using INSTRON 5944 as described by Lepetit and Culioli33. Force at rupture during shear compression testing 
was expressed in N/cm².

The aim was to select among 21 muscular biomarkers of tenderness (characterized by their relative abun-
dances)25 those the most predictive of the toughness of cooked m. Semitendinosus.

The dataset contains then the description of the 71 young bulls on 21 variables (muscular biomarkers) and on 
the response variable (m. Semitendinosus shear force) of meat tenderness.

Results and Discussion
This section describes the results obtained with the R package modvasel for both the simulated and the real data-
set. Let us recall that the aim of the methodology evaluated here is twofold:

https://doi.org/10.1038/s41598-019-46202-y
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•	 identify the useful covariates based using a computational measure of variable importance (VI),
•	 choose the best regression method including covariates selection using mean square error (MSE) criterion 

based on a train/test samples approach.

Validation of the statistical methodology via the simulation study. The sample of n = 200 obser-
vations generated from the regression models M1 is first used (linear model with five relevant covariates). The 
importances of the p = 15 covariates are calculated (with the R function varimportance) for N = 500 random 
replications and the method of multiple linear regression (MLR). Two graphics are obtained.

•	 The boxplots of the 500 values of Variable Importante (VI) for each covariate (see Fig. 3A). Horizontal line is 
the MSE value calculated on the original dataset (the baseline MSE).

•	 The plot of the means of these 500 VI’s values for each covariate (see Fig. 3B). In order to facilitate the graphic 
reading, the means are sorted in decreasing order. Vertical line is the cutoff value obtained with the automatic 
change point detection method. Horizontal line is again the baseline MSE.

One can see in Fig. 3A,B that the first five covariates (associated with the largest coefficient βj in absolute value 
in M1) have clearly greater importance than the last ten ones. The automatic covariates selection via change point 
detection (vertical line in Fig. 3B) works very well and keeps the five covariates relevant in the underlying model 
M1. The selection of the covariates with mean VI under the baseline MSE (MSE calculated on the original dataset 
without random permutation) selects also the five relevant variables (horizontal line in Fig. 3B). Note that the 
same graphics can be obtained for the other regression methods (SIR and RF for instance) but are not provided 
in this paper.

Let us now compare the performances of the three regression methods including automatic covariates selec-
tion (called linreg, sir and rf hereafter). For each method, the computational approach based on random train/
test samples, is used to estimate the so called test Mean Square Error (MSEtest). This procedure is repeated N = 50 
times and three graphics are obtained:

•	 The boxplots for each regression method (including covariate selection) of the N = 50 values of MSEtest (see 
Fig. 4A). The “best” method is the one associated with the boxplot taking the smallest values of MSEtest.

Figure 3. Boxplots of the 500 importance of variables (IV) values for each predictor (A; left) and plot of the 
mean of the IV’s values sorted in decreasing order (B; right) for model M1 and “linreg” estimation method. 
Horizontal line is the MSE value calculated on the original dataset with the “linreg” estimation method; Vertical 
line (right) is the obtained threshold with the automatic change point detection method.

Figure 4. Boxplots of the N = 50 MSE’s values evaluated on the test sample when models (including variable 
selection) are constructed on the train sample for regression model M1 (A; left) or M2 (B; right) and each 
approach. The more the MSE is weak and the less the boxplot is displayed, better are the results.

https://doi.org/10.1038/s41598-019-46202-y
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•	 The barplot for each method of the number of covariates automatically selected (via change point detection) 
in the N = 50 final models (see Fig. 5A,C,E). These graphics enables the user to vizualise for each regression 
method the complexity (measured by the number of selected variables) of the final models.

•	 The barplot for each method of the occurrences (in percent) of each covariates in the N = 50 final models (see 
Fig. 5B,D,F). These graphics are very informative to determine for each regression method the most relevant 
covariates.

Figure 4A shows that the methods linreg and sir are more efficient than rf to estimate the response variable Y. 
Their boxplots of test MSE show smaller values and lower dispersion compared to those of the rf method. Moreover,

•	 The methods linreg retains in 80% of cases a model with 5 covariates and a model with 6–8 covariates other-
wise (see Fig. 5A). The relevant covariates X1, …, X5 are always selected in the final models (see Fig. 5B). The 
other variables are very rarely selected in the final models.

Figure 5. Barplot of the numbers of predictors automatically selected (via change point detection) in the final 
model constructed on the N = 50 train samples (left) and barplot of the occurrences of each predictor in the 
final model (right) for the “linreg” approach (A,B) for the “sir” approach (C,D) for the “rf ” approach (E,F) 
and regression model M1 Left: the model might be considered as stable if the percentage of a given size of the 
reduced model is significantly higher than the other. Right: the most often a variable is selected in the model, the 
most important is this variable as predictor

https://doi.org/10.1038/s41598-019-46202-y
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•	 The method sir provides a model with 5 covariates in more than 80% of cases and retains a model with 6 or 
8-variables model otherwise (see Fig. 5C). The relevant covariates X1, …, X5 are again always selected in the 
final models and 5 other variables are sometimes selected (see Fig. 5D).

•	 The method rf shows good performances too in terms of complexity of the final models with almost 80% of 
5-covariates models (see Fig. 5E). The relevant covariates X1, …, X5 are are very often selected with only var-
iable X5 that does not appear in less than 10% of cases (see Fig. 5F). However, let us recall that Fig. 4A shows 
that the MSE (evaluated on the N test samples) of the rf method is significantly higher than that of the linreg 
and the sir methods.

To sum-up the previous results, the user may hesitate between the linreg and the sir method. Unsurprisingly 
(since the underlying model M1 is a linear regression model), these two approaches are the most successful 
in terms of MSE and in terms of selection of the five relevant covariates. As previously indicated, a parametric 
approach is usually preferred, as one would only have to estimate the parameters of the model, instead of having 
to estimate the entire model with a nonparametric approach. Moreover since a linear regression model is gener-
ally easier to manipulate, the preference for the linreg method may then appear more natural for the user.

What now when the underlying model is not linear? Let us consider the second sample of n = 200 observa-
tions generated from the regression models M2 (with five relevant covariates). This model is non linear since the 
link function between Y and the index X′β is cubic and not linear. The linreg method is then not well-adapted in 
this case while the method sir should easily recover the underlying structure. The rf method is not really sensitive 
to the shape of the link function but should suffer from the well-known “curse of dimensionality” since there is 
no dimension reduction step via an univariate index X′β. This expected result is confirmed in Fig. 4B where the 
methods linreg and rf are less efficient than the sir method to estimate the response variable Y. Their boxplot of 
test MSE show higher values and bigger dispersions compared to those of the sir method.

The Fig. 6C shows that the sir method selects 5 covariates in almost 90% of cases and retains a 4 or 6-variable 
model otherwise. Morover the four first relevant covariates X1, …, X4 are always selected in the final models, while 
covariate X5 is almost always selected (Fig. 6D).

The linreg method selects often two many covariates. The Fig. 6A shows that 6 to 9-variables are selected in 
more than 70% of cases and a model with 5 covariates is only retrieved in about 20% of cases. The relevant covar-
iates X1, …, X5 are almost always selected in the final model (see Fig. 6B) but surprisingly variables X14 and X15 
are also frequently selected. The rf approach is less greedy in terms of size of the final models with almost 80% of 
models with 4 covariates (see Fig. 6E). The first four relevant covariates are again almost always selected while X5 
is rarely retained in the final models (see Fig. 6F).

To sum-up the previous results, the linreg and rf methods are naturally less efficient than sir to predict the 
data simulated with model M2. Moreover the sir method selects often the five relevant covariates and thus 
retrieves the true underlying regression model. This result is not surprising since the underlying (semiparamet-
ric) regression model is a model well adapted to the sir approach and poorly adapted to the linreg approach. The 
rf approach clearly suffers from the fact that it does not build an index to reduce the dimension of the explanatory 
part of the model via an index of the type X′β. Therefore, for the dataset generated from M2, the preference for the 
sir approach is extremely clear for the user.

Application to the young bulls dataset. The same methodology has been applied to the dataset of 71 
young bulls. However here the underlying model is unknown and the idea is to select the best model and the best 
covariates (relevant biomarkers) to predict the response variable (meat tenderness). The three boxplots on the left 
of the Fig. 7A indicates that the three methods (linreg, sir and rf) have very similar performances to predict the 
response variable. Indeed, the median test Mean Square Error of the three methods are very close with a slightly 
bigger dispersion when linreg is used. The three boxplots of the right of Fig. 7A gives the test MSE for the same 
three regression methods but applied with all the covariates (i.e. without a variable selection step). When com-
paring the three boxplots on the right (test MSE without variable selection step) with the three boxplot on the left 
(test MSE with variable selection), it appears that the selection of covariates in the final model did not deteriorate 
the quality of the prediction of the response variable (meat tenderness). This information is important as the main 
aim of the study here is also to identify a reduce number of biomarkers that could be able to predict meat tender-
ness (or toughness). As mentioned before, the three methods have almost identical predictive performances but 
the study of the biomarkers selected by each method will help to choose one of them. The Fig. 7B,C helps identi-
fying for each method the relevant biomarkers. Figure 7B shows that the sir method retains a final model with 20 
biomarkers (among 21) in more than 50% of cases. Moreover, almost all the biomarkers are selected in more than 
60% of the final models (see Fig. 7C). The sir method is then not selective even if three biomarkers, namely heat 
shock protein 70.1B [HSP70-1b], β-enolase 3 [ENO3], lactate dehydrogenase b [LDHb] are selected in more than 
80% of final models. Additionally, αB-crystallin, superoxide dismutase [c], heat shock protein 20 [HSP20] and 
MyHC-II [MyHCIIa + IIx] are selected in more than 70% of the final models.

With the same reasoning, Fig. 7B shows that the method rf retains a small number of biomarkers (between 2 
and 11 biomarkers) in about 85% of final models and that 20 biomarkers are retained for the other 15% of final 
models. These 15% of final model with 20 biomarkers are not in favor of the choice the method rf. However, the 
progressive decrease in the percentage of selection of each biomarker in the final model (Fig. 7C) highlighted two 
biomarkers selected in more than 80% of the final models: HSP20 and ENO3.

Finally, regarding the ability to select few biomarkers linreg is clearly the best method. Figure 7B shows that 
with linreg no final model has more than 14 biomarkers and the majority is based on 10 biomarkers. The most 
relevant biomarkers are HSP70-1b and ENO3 selected in 100% of the cases, LDHb, αB-crystallin, HSP20 and 
SOD1 selected in more than 70% of the case. To sum-up, the biomarkers HSP70-1b, ENO3, LDHb, SOD1 appear 
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to be relevant with the 3 methods, while αB-crystallin, myosin heavy chain-I [MyHCI] and HSP20 appear to be 
relevant with at least 2 methods.

The analysis of Fig. 7A–C leads to the conclusion the linreg method is, for this dataset, a reasonable choice. 
The predictive quality of linreg is very comparable to that of sir and rf, the size of the models of prediction are 
smaller (less biomarkers as covariates) and the linear shape of the link function is very convenient for further 
interpretations.

Once the linreg method is chosen, the importance of the 20 biomarkers is now calculated (with the R func-
tion varimportance) using the entire dataset (see Fig. 8). The boxplots of the variable importance (VI) of 10 
biomarkers is above the baseline MSE (horizontal line). These biomarkers are then important to predict meat 
tenderness and could be selected in the final model. In the present discussion, we focus our discussion only on 
the more important biomarkers. Finally, the 6 selected biomarkers are namely, HSP70-1b, ENO3, LDHb, SOD1, 
αB-crystallin and HSP20 (the 6 biomarkers that were also the most relevant in Fig. 7B).

The final model is a linear regression model with 6 covariates (the 6 selected biomarkers) used to predict meat ten-
derness. This model is estimated by multiple linear regression with a multiple R-squared of 0.38. The biomarkers with 

Figure 6. Barplot of the numbers of predictors automatically selected (via change point detection) in the final 
model constructed on the N = 50 train samples (left) and barplot of the occurrences of each predictor in the 
final model (right) for the “linreg” approach (A,B) for the “sir” approach (C,D) for the “rf ” approach (E,F) and 
regression model M2.
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a positive significant link with toughness are HSP70-1B, ENO3, SOD1 and HSP20, whereas LDHb and αB-crystallin 
were found significantly negatively linked. This reduced list of biomarkers obtained by this computational methodol-
ogy, independently to knowledge on meat biology, is however very relevant when considering the biological function 
of these proteins. Indeed, 3 of these proteins were heat shock proteins (HSP). This is coherent with previous results 
indicating an important role of HSPs in tenderization process24,28. Among these 3 HSPs, Hsp70-1B (selected in 100% of 
randomization Fig. 7C), was shown to be a biomarker of low tenderness evaluated by sensory analysis or by mechanical 
measurements, in different breeds and in several muscles25. This protein is strongly involved in the maintenance of 
structural, ultrastuctural and functional properties of skeletal muscle of live animals but also a role during post-mortem 
ageing of meat. Furthermore, an anti-apoptotic role in skeletal muscle has been described28. Several results showed no 
breed or muscle effect on the abundance of Hsp70-1B, which could explain its relation with tenderness independently 
of these factors. The small HSP, such as HSP20 and αB-crystallin are involved in various biological functions: prevent-
ing aggregation of partially folded polypeptides, regulating the intracellular transport and apoptotic process, regulating 
cellular differentiation and proliferation, translation, oxidative stress, cytoskeleton stabilization, apoptosis, and auto-
phagy28. Their involvement in tenderization process has been proposed by several authors19,28, but their relationships 
with meat tenderness differ according to the contractile and metabolic properties of the muscles. In the Semitendinosus, 
a fast glycolytic muscle, several results showed a negative relationship of sHSP with tenderness. However, a positive 
correlation with the tenderness of LT muscle (mixt oxido-glycolytic) was observed25. In ST muscle, Guillemin et al.27 
demonstrated that HSPs from both HSP70 family and small HSP family were inversely correlated with tenderness, as 
observed in the present study. They proposed that the tenderization efficiency could be especially dependent on the 
HSP20s/HSP70s ratio. These HSP families are also involved in oxidative resistance of the cell, suggesting that tenderness 

Figure 7. Parallel boxplots of MSEtest made on 100 learning/test replications (A); repartition (in %) of 
the number of selected biomarkers in each model (B); and percentage of occurrence of each biomarker in 
the selected model (C). (A) The more the MSE is weak and the less the boxplot is displayed, better are the 
results. (B) The model might be considered as stable if the percentage of a given size of the reduced model is 
significantly higher than the other. (C) The most often a variable is selected in the model, the most important 
is this variable as predictor. Nevertheless, if a high number of variables appears to be selected in the model, it 
means that the model suffers and that it is not able to select variables.
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could be dependent on the oxidative stress34,35. After slaughter free radicals of oxygen (ROS) levels dramatically increase 
consecutively to anoxia and deprivation of oxygen explaining the important role of antioxidant enzymes. The identifi-
cation of SOD1 as one of the six main protein biomarkers of tenderness in the present study, is in accordance with these 
data. This antioxidant enzyme protects the cell against oxidative stress which results in formation of protein aggregates 
that may hamper the tenderization process of the meat, thereby confirming that anti-oxidative enzymes such as SOD1 
have a negative contribution to tenderness in ST muscle27.

Two others proteins are involved in energy metabolism, pathways strongly involved in muscle properties of 
living animals but also in the meat tenderization process. Indeed, ENO3 and LDHb, are involved in glycolytic 
metabolism, ENO3 catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate, and LDHb catalysis 
the inter-conversion of pyruvate and lactate with concomitant interconversion of NADH and NAD+. Variations 
of their abundance was often reported in bovine muscles differing by tenderness25,29,36,37. A positive correlation 
between LDHb abundance and tenderness of ST muscle was reported by several authors25,37.

Conclusion
The originality of this paper remains in the new computational approach (which is generic whatever the considered 
regression models/methods) developed to choose regression model/method including variable selection. Simulations 
exhibited good numerical behavior of the statistical methodology. For the real dataset of 71 young bulls, whatever the 
regression method, the proteins relevant to predict meat tenderness are approximatively the same with close classi-
fications by order of importance. These biomarkers are actually numbered at six: HSP70-1B, ENO3, SOD1, HSP20, 
LDHb and αB-crystallin. The multiple linear regression method with these six covariates has a multiple R-squared 
of only 0.38. Nevertheless, the biological mechanisms depend on highly regulated mechanisms remaining unknown. 
Moreover, it has previously been indicated that the correlations between tenderness and metabolic enzymes are differ-
ent (and sometimes reversed) from one muscle to another. Thus, these conclusions needs to be confirmed on a larger 
and less homogeneous sampling of animals, in order to establish reliable predictions of meat tenderness. Lastly, the 
modvarsel R package is usable for scientist that aim to select parameters to predict a phenotype, whatever the topic.

References
 1. Rencher, A. C. & Schaalje, G. B. Linear models in statistics. (John Wiley & Sons, 2008).
 2. Jolliffe, I. T. A note on the use of principal components in regression. Appl. Stat. 300–303 (1982).
 3. Hoerl, A. E. & Kennard, R. W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12, 55–67 (1970).
 4. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
 5. Hastie, T., Tibshirani, R. & Friedman, J. Unsupervised learning. in The elements of statistical learning 485–585 (Springer, 2009).
 6. Li, K.-C. Sliced inverse regression for dimension reduction. J. Am. Stat. Assoc. 86, 316–327 (1991).
 7. Duan, N. & Li, K.-C. Slicing regression: a link-free regression method. Ann. Stat. 505–530 (1991).
 8. Simonoff, J. S. Smoothing methods in statistics. (Springer Science & Business Media, 2012).
 9. Härdle, W. Smoothing techniques: with implementation in S. (Springer Science & Business Media, 2012).
 10. Schimek, M. G. Smoothing and regression: approaches, computation, and application. (John Wiley & Sons, 2013).
 11. Martinez, H. A. et al. National Beef Tenderness Survey–2015: Palatability and Shear Force Assessments of Retail and Foodservice 

Beef. Meat Muscle Biol. 1, 138–148 (2017).
 12. Strydom, P., Lühl, J., Kahl, C. & Hoffman, L. C. Comparison of shear force tenderness, drip and cooking loss, and ultimate muscle pH 

of the loin muscle among grass-fed steers of four major beef crosses slaughtered in Namibia. South Afr. J. Anim. Sci. 46, 348–359 (2016).
 13. Van Wezemael, L., De Smet, S., Ueland, Ø. & Verbeke, W. Relationships between sensory evaluations of beef tenderness, shear force 

measurements and consumer characteristics. Meat Sci. 97, 310–315 (2014).
 14. Shackelford, S. D. et al. Consumer impressions of Tender Select beef. J. Anim. Sci. 79, 2605–2614 (2001).
 15. Destefanis, G., Brugiapaglia, A., Barge, M. T. & Dal Molin, E. Relationship between beef consumer tenderness perception and 

Warner–Bratzler shear force. Meat Sci. 78, 153–156 (2008).
 16. Hopkins, D. L., Lamb, T. A., Kerr, M. J. & van de Ven, R. J. The interrelationship between sensory tenderness and shear force 

measured by the G2 Tenderometer and a Lloyd texture analyser fitted with a Warner–Bratzler head. Meat Sci. 93, 838–842 (2013).

Figure 8. Variable importance for multiple linear regression on the entire dataset and selection of the 
biomarkers for the final reduced model. The variables, whose boxplots are located above the red line are 
sufficiently important to be considered as covariates.

https://doi.org/10.1038/s41598-019-46202-y


1 2Scientific RepoRts |         (2019) 9:10014  | https://doi.org/10.1038/s41598-019-46202-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

 17. Holman, B. W., Fowler, S. M. & Hopkins, D. L. Are shear force methods adequately reported? Meat Sci. 119, 1–6 (2016).
 18. Picard, B. & Gagaoua, M. Proteomic investigations of beef tenderness. In Proteomics in Food Science 177–197 (Elsevier, 2017).
 19. Picard, B. et al. Recent advances in omic technologies for meat quality management. Meat Sci. 109, 18–26 (2015).
 20. Picard, B. et al. Skeletal muscle proteomics in livestock production. Brief. Funct. Genomics 259–278 (2010).
 21. Cassar-Malek, I. & Picard, B. Expression marker-based strategy to improve beef quality. Sci. World J. 2016 (2016).
 22. Gagaoua, M., Terlouw, E. M. C., Monteils, V., Couvreur, S. & Picard, B. Stress proteins in cull cows: relationships with transport and 

lairage durations but not with meat tenderness. In Proceedings of the 63rd International Congress of Meat Science and Technology, 
Cork, Ireland 427–428 (2017).

 23. Moloto, K. W. et al. Is there a Possibility of Meat Tenderness Protein-Biomarkers on the Horizon? (2017).
 24. Ouali, A. et al. Biomarkers of meat tenderness: present knowledge and perspectives in regards to our current understanding of the 

mechanisms involved. Meat Sci. 95, 854–870 (2013).
 25. Picard, B. et al. Inverse relationships between biomarkers and beef tenderness according to contractile and metabolic properties of 

the muscle. J Agric Food Chem 62, 9808–9818 (2014).
 26. Killick, R. & Eckley, I. changepoint: An R package for changepoint analysis. J. Stat. Softw. 58, 1–19 (2014).
 27. Guillemin, N., Bonnet, M., Jurie, C. & Picard, B. Functional analysis of beef tenderness. J. Proteomics 75, 352–365 (2011).
 28. Lomiwes, D., Farouk, M. M., Wiklund, E. & Young, O. A. Small heat shock proteins and their role in meat tenderness: A review. Meat 

Sci. 96, 26–40 (2014).
 29. Gagaoua, M., Terlouw, E. C., Boudjellal, A. & Picard, B. Coherent correlation networks among protein biomarkers of beef 

tenderness: What they reveal. J. Proteomics 128, 365–374 (2015).
 30. Krzywinski, M. & Altman, N. Points of Significance: Multiple linear regression. (Nature Publishing Group, 2015).
 31. Guillemin, N. et al. Validation of a dot-blot quantitative technique for large scale analysis of beef tenderness biomarkers. J. Physiol. 

Pharmacol. 60, 91–97 (2009).
 32. Bouley, J., Chambon, C. & Picard, B. Mapping of bovine skeletal muscle proteins using two-dimensional gel electrophoresis and 

mass spectrometry. Proteomics 4, 1811–1824 (2004).
 33. Lepetit, J. & Culioli, J. Mechanical properties of meat. Meat Sci. 36, 203–237 (1994).
 34. Fink, A. L. Chaperone-mediated protein folding. Physiol. Rev. 79, 425–449 (1999).
 35. Laufen, T. et al. Mechanism of regulation of hsp70 chaperones by DnaJ cochaperones. Proc. Natl. Acad. Sci. 96, 5452–5457 (1999).
 36. Concannon, C. G., Gorman, A. M. & Samali, A. On the role of Hsp27 in regulating apoptosis. Apoptosis 8, 61–70 (2003).
 37. Guillemin, N. P. et al. Different phenotypic and proteomic markers explain variability of beef tenderness across muscles. Int. J. Biol. 

4, 26 (2012).

Acknowledgements
The data came from the EU FP6 Integrated Project ProSafeBeef, contract no. FOODCT-2006-36241. Funding 
by the European Union is gratefully acknowledged with respect to animal production and laboratory analyses. 
We convey special thanks to Dr. J-F Hocquette, the manager of the work-package WP3.4 of ProSafeBeef, 
for his valuable contribution. The authors thanks INRA Herbipôle for animal management and slaughter, 
INRA-Le Magneraud for the sensory analysis and all of the people involved in this project for their assistance 
in data collection, muscle sampling and analysis. The authors would like to thank the Associate Editor and two 
anonymous referees for their insightful comments and suggestions, that led to a substantial improvement of a 
previous version of this work.

Author Contributions
Ellies-Oury M.P., Chavent M., Conanec A., Saracco J. analyze data. Ellies-Oury M.P., Chavent M., Bonnet M., 
Picard B., Saracco J. interpret data. Ellies-Oury M.P., Chavent M., Bonnet M., Picard B., Saracco J. draft the article. 
Ellies-Oury M.P., Chavent M., Conanec A., Bonnet M., Picard B., Saracco J. revise part of it. Ellies-Oury M.P., 
Chavent M., Conanec A., Bonnet M., Picard B., Saracco J. approve the final version. Ellies-Oury M.P., Chavent M., 
Conanec A., Bonnet M., Picard B., Saracco J. agree to be accountable for the results.

Additional Information
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-46202-y
http://creativecommons.org/licenses/by/4.0/

	Statistical model choice including variable selection based on variable importance: A relevant way for biomarkers selection ...
	Three Different Regression Models
	Searching for Tenderness Biomarkers
	Method
	Description of the proposed statistical methodology. 
	Some details about the developed R package. 
	Simulated dataset. 
	Experimental dataset. 

	Results and Discussion
	Validation of the statistical methodology via the simulation study. 
	Application to the young bulls dataset. 

	Conclusion
	Acknowledgements
	Figure 1 How to choose a model?.
	Figure 2 How to select variable(s)?.
	Figure 3 Boxplots of the 500 importance of variables (IV) values for each predictor (A left) and plot of the mean of the IV’s values sorted in decreasing order (B right) for model M1 and “linreg” estimation method.
	Figure 4 Boxplots of the N = 50 MSE’s values evaluated on the test sample when models (including variable selection) are constructed on the train sample for regression model M1 (A left) or M2 (B right) and each approach.
	Figure 5 Barplot of the numbers of predictors automatically selected (via change point detection) in the final model constructed on the N = 50 train samples (left) and barplot of the occurrences of each predictor in the final model (right) for the “linreg
	Figure 6 Barplot of the numbers of predictors automatically selected (via change point detection) in the final model constructed on the N = 50 train samples (left) and barplot of the occurrences of each predictor in the final model (right) for the “linreg
	Figure 7 Parallel boxplots of MSEtest made on 100 learning/test replications (A) repartition (in %) of the number of selected biomarkers in each model (B) and percentage of occurrence of each biomarker in the selected model (C).
	Figure 8 Variable importance for multiple linear regression on the entire dataset and selection of the biomarkers for the final reduced model.




