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Introduction

Tobit model or sample selection model (SSM)

Basically sample selection models (SSM) are described by two
equations.

A selection equation gives the state “observed / non observed
(missing)" of the dependent variable y as a function of explanatory
variables x.

An outcome equation gives the value of the dependent variable,
when observed, as another function of explanatory variables x.

Numerous papers dealing with univariate SSM have been
published. The adjective “univariate” refers to y € R.

In this communication, we focus on multivariate SSM, that is when
yeRY g>1.
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Introduction

A multivariate semiparametric sample selection model

Forj=1,...,q
. 0 (v, -0) e ) (w1~ ()
y(J) — 1 <X1717€1 ) if g2 (Xz’yz,gé ) >0 (1)
0 otherwise.
o y= (y(l), ... ,y(q)) is a g-dimensional random vector.

@ X1 € RPt and X» € RP?, are subvectors of a random vector
x € RP, assumed to be elliptically distributed with parameters
p = E[x] and X = V(x) positive definite, that is X, = A} x.

@ The parameters 47 and 42 are the p; X 1 and po x 1 real
unknown slope parameters.
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Introduction

A multivariate semiparametric sample selection model

J) = gV (X171,€gj)) if g (%ﬁz,eé”) >0
0 otherwise.
° gfj) and g(J) are unknown link functions called the observation
link and the selection link functions — link-free approach

o Lete= ( (1) eg ), ..,sgq),egq)) be a random error term
independent of x with an unknown distribution

— distribution-free approach

We will focus on the parametric part

— estimation of the direction of the selection and observation
slope vectors 41 and 4,
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Introduction

A multivariate semiparametric sample selection model

Forj=1,...,q,
yU = & (iwl’ggj» it g3 (%’"72,65].)) >0
0 otherwise.

This model is a particular case of a general multivariate two indices
semiparametric regression model :

y = f(X'v1,x"y2,€) (2)

where v, = Ay € RP, k=1,2.
(We only expand 7, to a p x 1 vector with zeros corresponding to
the non-selected components.)
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Introduction

Identifiability conditions :
(/) Each vector X, k = 1,2, has at least an x-component not
present in the other X, ; such a component could be called

k-specific.
(i) At least one component of v, among the k-specific
component is non null, k =1,2.

Let us define the linear subspaces E = Span(~1,72) and
Ex = Span(Ay) of RP.
We can now bring these conditions into a geometrical perspective.

Theorem 1. Under the assumptions of model (1) and the
identifiability conditions, we have : for k = 1,2,

E N Ex = Span(v).
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Population and sample approaches

Our approach splits into two principal steps.

@ In the first step, the idea is to use multivariate sliced inverse
regression in order to get a >-orthogonal basis of the e.d.r.
space E = Span(vy1,72).

@ In the second step, since the linear subspaces E; and E; are
known (since A; and Ay are chosen by the user), two
canonical analysis of (E, E1) and (E, Ez) can provide bases of
E N E; = Span(y1) and E N E; = Span(72).
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Population and sample approaches

Population version

Step 1 : Pooled marginal sliced inverse regression — provide a
> -orthogonal basis of E

Method : PMS,, (Pooled marginal sliced inverse regression based
on SIR,, see Saracco, 2005)

Major novelty : consider a transformation (slicing) T;(.) of y()
with a specific slice for “missing” y) value.

Results : Under usual assumptions for MSIR approach and model
(1), the eigenvectors vy, v» associated with the largest two
eigenvalues of Z_ll\/la,p span the e.d.r. space :

Span(vi,w) = E

where M, p = J‘.’:l le\/lgjl.), for positive weigths w; and
parameters a; € [0, 1].
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Population and sample approaches

Step 2a : Two canonical analysis — provide a >-orthogonal
basis of Ex N E

We consider the subspaces E, and E of RP equipped with the
inner product ¥.

This basis is formed by the eigenvector b, € RP corresponding to
the eigenvalue 1 of Pg, PePE,, where Pg, and Pg are respectively
the > -orthogonal projectors onto E and E.

From Theorem 1, this eigenvector by is colinear to vy, and is

Y -normalized : b, X b, = 1.

Step 2b : Retrieval of the direction of 7, ¢ RP.

by = Al by € RPx

This vector by is colinear to 4, and is > g-normalized.
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Population and sample approaches

Estimation of the directions

Let {(yi,xi), i =1,...,n} be a sample. Let 3 be the empirical
covariance matrix of the x;'s

Step 1 : Estimating a basis of the e.d.r. space £ by PMS,
— E = Span(Ol, 92)

where 13 and {», are the eigenvectors associated with the two
largest eigenvalues of 1 p.

Step 2a : Estimating the direction of v, k = 1,2 via
canonical analysis of (E, E;)

— eigenvector by correspondlng to the major eigenvalue of the
3- -symmetric matrix PEkP PEk, where P = B(B'SB)"'B'S = BB'S.
and Pg, = Ac(AZA) AL

Step 2b : Estimating the direction of 7, k =1,2.

b = A by.
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Asymptotic theory

Convergence in probability of the estimated directions

Theorem 2. Under classical assumptions for MSIR approach, we
have : for k = 1,2,

Bk = lNJk + Op(nfl/z), with the vector Z)k colinear to .

Asymptotic distribution of be, k=1,2

Theorem 3. Under classical assumptions for MSIR approach, we
have : for k =1,2,

\/E(fz)k — Bk) —d N(O, Ck),

where the expression of Cy can be found in Chavent et al. (2008).
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Simulation results

Simulated model : semiparametric multivariate
(g = 2) model

gV (5451, = exp(451) + e (observation)

gz( (5%, €§ ) = %45, + Sgl) (selection)

( X1, € ):( 51)3 +3(X1’Y1) +€(12) (observation)
)( %72, 52)) (452)? + e (selection)

Quality measure of the estimates : cos2(l~)f<,&k), k=1,2.
Different percentages of non-observed values (25% and 50%)

Various dimensions of the explanatory variable (p =5 , 10)

Various correlation of the error term between the obsevation
equation and the selection equation (p = 0.1, 0.5, 0.9)

Different sample sizes (n = 100, 200 and 300)
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Simulation results

Comparison with a parametric approach : Tobit || model

Simulated model (¢ =1) :

. gl(Xﬂh €1) = exp (Xl’Yl) +e
(M2) -
2(5%72, €2) = exp (%72) + €2

0=0.9, 50%
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Simulation results

Concluding remarks

@ Main advantages :

o Link-free and distribution-free method.

e Geometric approach which deals symmetrically with both
selection and observation slope vectors.

o Estimation method numerically very fast.

@ The R source code is available from the authors.

@ The simulation study has highlighted a good behaviour of the
method even for non-elliptical distribution of the covariate.

@ A real economic application is currently under investigation.
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Simulation results

Remark : For model (2), two crucial conditions for the theoretical
success of SIR, and PMS, methods are the following :
a linearity condition
E(v'x|y1x,75x) is linear for any v, (3)
and a constant variance condition
V(x|vix,v5x) is non-random. (4)

Note that (3) is satisfied when x has an elliptically symmetric
distribution and (4) is satisfied when x follows a multivariate
normal distribution (which is an elliptically one).

Under usual assumptions for MSIR approach (satisfied when x
follows a multivariate normal distribution) and model (1), the
eigenvectors vy, v» associated with the largest two eigenvalues of
Z_ll\/la,p are e.d.r. directions and span the e.d.r. space E :

Span(vl, V2) =E
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Simulation results

Let us first give a brief overview of univariate SSM. Heckman
(1979) introduced what is now regarded as the prototype selection
model. Amemiya (1985) refers to this model as the type Il Tobit

model :
(E1) : yif =01+ xX'p1+er
(E2) : y3=0r+X'Po+e
(E3) © yp=1[ys > 0]
(E4) : yi=yiy2
(E5) : (e1,e2)|x ~N(0,F), T = of o1
1,&2 ) ) - 012 O'%

The observed variables are : y; € R, y» € {0,1} and x € RP.

Equation (E3) is the selection equation, and equation (E4) is the
outcome equation.
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Simulation results

Simulated model

g‘ﬁ(" A, el) = exp({F1) + eV

&) (42, ey)) = 5572 + <1 2

g >§m,sl ) = (451)° + 3(%{51) +
2

< o \2 (2)
(%472,€5)) = (%472)? + &5
where x ~ N;(0, ), %1 (resp %2) is the (p — 1)-dimensional vector corresponding to the first (resp. last)
(p — 1) coordinates of x.
The error term & = (egl), egl), 5(12), 5(22))’ is normally distributed : € ~ Ny (e, Z¢).
Two design of the covariance of € will be considered :

1
X = and ¥. =

coxn =
corx
™ HOO
=y oo
T
T T D
T HFD D
Lanii B c o)

with different values of p (0.1, 0.5 and 0.9).

In the matrix ):’é the error term associated with the two component y(l) and y(z) are assumed to be independant,
which is not the case with the covariance matrix ):IEI.

To control the number of non observed values for the ym's component, we will use two different values of pc in

order to obtain around 25% (resp. 50%) of non observed values for y(l) and y(z).
For the slope parameters, we take 51 = (1,1, —1, —1,0,...,0)" and 35 = (0,...,0,1, —1,1, —1).
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Simulation results

Simulated example

We consider a simulated sample of n = 100 data points from the previous

model for p=5, L. =¥ p =05 and £ = 25%.

Let us introduce the two variables yil) = 2(1)(%772, Egl)) and y£2) = ;2)(;(2"3'2, 522)), which are called in the
literature latent variables (since in practice the values of these variables are never available in the sample).

The horizontal line allows us to determine for which observations the yl.(")
hand side graphics.

's values will be non observed in the left
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FIG .. Plots ofyU) versus the true “observation” index 521’ 41 (on the left) and plots of the latent variables yﬁ:i)

versus the true “selection” index X572

ol =

(on the right).
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Simulation results

The direction of 47 and 45 are then estimated and we get

by = (—0.483, —0.565, 0.447,0.497) and by = (—0.613,0.539, —0.350, 0.459)’.

The corresponding squared cosines are respectively equal to 0.993 and 0.962.
Moreover, we compute the quality of the estimation E of the e.d.r. space E
using Trace(PgPg)/2 which is equal to 0.886 for this simulated sample. Even if
this subspace is relatively poorly estimated compared with the quality of each
estimated direction, the second step (which takes into account additional
information) ensures to recover the good directions of the observation and

selection slope vectors.
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Simulation results

In Figure 2, we represent on the left hand side the plots of the response variable

y(j) versus the estimated “observation” index >"<1'l~31 Note that the scatterplots of
the (left hand side) Figures 1 and 2 have not the same orientation. We add on
these plots the Nadaraya-Watson estimation of the observation link functions.
On the right hand siAde, we plot the tY)’s values versus the estimated

“selection” index %352, and we also plot the Nadaraya-Watson estimation of the
probability to observe y(f).
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FIG .. Kernel estimation of the observation link functions (left hand side) and Nadaraya-Watson estimation of
the probability of ) =1 (that is yU) observed)
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Simulation results

Simulation study

To study the performance of the proposed method, we consider
different sample sizes (n = 100, 200 and 300), various dimensions
of the explanatory variable (p = 5, 10), the two different choices of
covariance matrix (X! and /), and two levels £ of non observed
values for yU) (25% and 50%).

Results of the simulation study

For each combination of the simulation parameters (p, n, p, L,
..), N =500 samples have been generated. For each sample
I=1,...,N, the directions of the slope vectors 41 and 42 have

been estimated and we get b’ and b}. Then, we evaluate the

corresponding values of the quality measure : c| = cos (bk,yk) for

k=1,2and I =1,...,N. The closer the squared cosine is to one,
the better the estimation.
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Simulation results

We exhibit the results via the boxplots of these squared cosines for

only one combination.
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Simulation results

For others simulation parameters, we have observed that the
results were also very good. More precisely, one can note that :

@ the form of the covariance matrix of the error term € and the value of the
parameter p do not seem to influence the quality of the estimates.

@ the level £ of the non observed values for the y!Y)'s only have a gentle
influence on the quality of the estimation of the selection slope vectors
42, especially in terms of spread ot the squared cosine values.

When this level is low (£ = 25%), there is less information on the
selection part of the model and then the quality of the 4, estimates are
slightly lower than when this level is larger (£ = 50%).

On the other hand, not surprisingly, one can observe an opposite behavior
for the estimates of the observation slope parameter 91 since there is less

information on the observation part of the model when L is large.
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Simulation results

@ the sample size n has a quite predictable influence of the quality of the
estimates : the largest is the sample size, the greatest are the squared
cosines.

@ the dimension p of the explanatory variable x does seem to have any
effect on the quality of the estimates.

@ In order to investigate the robustness of the method when x does not
follow a multivariate normal distribution, we consider here a discrete
distribution for x. One can see that the estimations of the directions of
the slopes for the selection equations and the outcome equations are

quite good, even for a discrete x.

M. Chavent, B. Liquet, J. Saracco Multivariate semiparametric sample selection model



	Plan
	Main Talk
	Introduction
	Population and sample approaches
	Asymptotic theory
	Simulation results


