Teaching

Vidéo de présentation de la licence MIASHS de Bordeaux aux Journées Portes Ouvertes [ici]

Apprentissage supervisé

Les compte-rendu de TP sont à rédiger au format RMarkdown [cheatsheet][reference guide] en respectant les règles de style pour écrire du code R.

  • TP1 : Introduction via les k plus proches voisins  [sujet]
  • TP2 : Règle de Bayes avec coûts via les k plus proches voisins [sujet]
  • TP3 : Calibrer/évaluer une méthode et la comparer à d’autres [sujet]
  • TP4 : Score et courbe ROC en classification binaire [sujet]
  • TP5 : Analyse discriminante linéaire et quadratique [sujet]
  • TP6 : Bayésien naif [sujet]
  • TP7 : Régression logistique [sujet]
  • TP8 : Arbres de classification  [sujet][vignette][complément]
  • TP9 : Forêts aléatoires [sujet][complément]

Data :

Challenge : résultats 2019

Datamining

  • Cours 1 : Analyse en Composantes Principales [pres]
  • Cours 2 : Clustering [pres]
  • Cours 3 : Analyse des Correspondances Multiples [pres]

Data :

Analyse des données (L3)

  • Chapitre 1 : Analyse en Composantes Principales [pres]
  • Chapitre 2 : Classification automatique [pres]

Modélisation Statistique (L3)

  • Chapitre 1 : Régression linéaire simple [pres][print]
  • Chapitre 2 : Régression linéaire multiple  [pres][print][data]

Prérequis :


Analyse de données quantitatives (M1)


Analyse de données qualitatives et analyse factorielle discriminante  (M2)

Prérequis : ACP avec métriques

Scoring (M2)